当前位置:网站首页>Simple implementation of YOLOv7 pre-training model deployment based on OpenVINO toolkit
Simple implementation of YOLOv7 pre-training model deployment based on OpenVINO toolkit
2022-08-05 01:58:00 【Intel Edge Computing Community】
●一、YOLOv7简介●
官方版的YOLOv7相同体量下比YOLOv5精度更高,速度快120%(FPS),比 YOLOX 快180%(FPS),比 Dual-Swin-T 快1200%(FPS),比 ConvNext 快550%(FPS),比 SWIN-L快500%(FPS).在5FPS到160FPS的范围内,无论是速度或是精度,YOLOv7都超过了目前已知的检测器,并且在GPU V100上进行测试, 精度为56.8% AP的模型可达到30 FPS(batch=1)以上的检测速率,与此同时,这是目前唯一一款在如此高精度下仍能超过30FPS的检测器.
论文链接:https://arxiv.org/abs/2207.02696
代码链接:https://github.com/WongKinYiu/yolov7

●二、预训练模型准备●
模型权重下载
可以从官方githubThe link provided in the repository is based on the downloadCOCO数据集的YOLOv7预训练模型权重.
Model | Test Size | APtest | AP50test | AP75test | batch 1 fps | batch 32 average time |
YOLOv7 | 640 | 51.4% | 69.7% | 55.9% | 161 fps | 2.8 ms |
YOLOv7-x | 640 | 53.1% | 71.2% | 57.8% | 114 fps | 4.3ms |
YOLOv7-W6 | 1280 | 54.9% | 72.6% | 60.1% | 84 fps | 7.6 ms |
YOLOv7-E6 | 1280 | 56.0% | 73.5% | 61.2% | 56 fps | 12.3 ms |
YOLOv7-D6 | 1280 | 56.6% | 74.0% | 61.8% | 44 fps | 15.0 ms |
YOLOv7-E6E | 1280 | 56.8% | 74.4% | 62.1% | 36 fps | 18.7 ms |
模型转换
可以从官方githubThe link provided in the repository is based on the downloadCOCO数据集的YOLOv7预训练模型权重.
# 下载YOLOv7官方仓库:
$ git clone [email protected]:WongKinYiu/yolov7.git
$ cd yolov7/models
$ python export.py --weights yolov7.pt
●三、模型部署●

通过Netron工具打开yolov7.onnx文件后可以看到,The official pre-trained modeloutputThe section contains the prediction results of the three feature layers,Therefore, it needs to be based on the prior box of each layer(anchor)After adjusting the output data,再进行堆叠.
由于YOLOv7The model pre- and post-processing basic sumsYOLOv5一致,Most data processing modules can be reused directly.话不多说直接上代码:

●六、运行结果●
运行python示例后,会在本地dataGenerate code in the directorybounding box以及label的图片,Here we use the horse data attached to the official repository for testing,具体结果如下:
# 运行代码
$ python YOLOV7.py -i horse.jpg -m yolov7.onnx
Github地址:
https://github.com/OpenVINO-dev-contest/YOLOv7_OpenVINO
--END--
边栏推荐
猜你喜欢

手把手基于YOLOv5定制实现FacePose之《YOLO结构解读、YOLO数据格式转换、YOLO过程修改》

Exploding the circle of friends, Alibaba produced billion-level concurrent design quick notes are too fragrant

在这个超连接的世界里,你的数据安全吗

ExcelPatternTool: Excel table-database mutual import tool

高数_复习_第1章:函数、极限、连续

程序员失眠时的数羊列表 | 每日趣闻

【Word】Word公式导出PDF后出现井号括号#()错误

tcp中的三次握手与四次挥手

【TA-霜狼_may-《百人计划》】图形4.3 实时阴影介绍

缺陷检测(图像处理部分)
随机推荐
进程在用户态和内核态的区别[独家解析]
"Dilili, wait for the lights, wait for the lights", the prompt sound for safe production in the factory
HOG特征学习笔记
AI+小核酸药物|Eleven完成2200万美元种子轮融资
10年测试经验,在35岁的生理年龄面前,一文不值
The difference between a process in user mode and kernel mode [exclusive analysis]
Jincang database KingbaseES V8 GIS data migration solution (3. Data migration based on ArcGIS platform to KES)
Greenplum Database Fault Analysis - Can a Soft Connection Be Made to the Database Base Folder?
Live playback including PPT download | Build Online Deep Learning based on Flink & DeepRec
【TA-霜狼_may-《百人计划》】图形4.3 实时阴影介绍
如何创建rpm包
迁移学习——Joint Geometrical and Statistical Alignment for Visual Domain Adaptation
Are testing jobs so hard to find?I am 32 this year and I have been unemployed for 2 months. What should an older test engineer do next to support his family?
pytorch的使用:卷积神经网络模块
AI+PROTAC|dx/tx完成500万美元种子轮融资
".NET IoT from scratch" series
JZ搜索引擎solr研究-从数据库创建索引
直播回放含 PPT 下载|基于 Flink & DeepRec 构建 Online Deep Learning
【MySQL系列】- LIKE查询 以%开头一定会让索引失效吗
Domain Driven Design - MDD