当前位置:网站首页>Simple implementation of YOLOv7 pre-training model deployment based on OpenVINO toolkit
Simple implementation of YOLOv7 pre-training model deployment based on OpenVINO toolkit
2022-08-05 01:58:00 【Intel Edge Computing Community】
●一、YOLOv7简介●
官方版的YOLOv7相同体量下比YOLOv5精度更高,速度快120%(FPS),比 YOLOX 快180%(FPS),比 Dual-Swin-T 快1200%(FPS),比 ConvNext 快550%(FPS),比 SWIN-L快500%(FPS).在5FPS到160FPS的范围内,无论是速度或是精度,YOLOv7都超过了目前已知的检测器,并且在GPU V100上进行测试, 精度为56.8% AP的模型可达到30 FPS(batch=1)以上的检测速率,与此同时,这是目前唯一一款在如此高精度下仍能超过30FPS的检测器.
论文链接:https://arxiv.org/abs/2207.02696
代码链接:https://github.com/WongKinYiu/yolov7
●二、预训练模型准备●
模型权重下载
可以从官方githubThe link provided in the repository is based on the downloadCOCO数据集的YOLOv7预训练模型权重.
Model | Test Size | APtest | AP50test | AP75test | batch 1 fps | batch 32 average time |
YOLOv7 | 640 | 51.4% | 69.7% | 55.9% | 161 fps | 2.8 ms |
YOLOv7-x | 640 | 53.1% | 71.2% | 57.8% | 114 fps | 4.3ms |
YOLOv7-W6 | 1280 | 54.9% | 72.6% | 60.1% | 84 fps | 7.6 ms |
YOLOv7-E6 | 1280 | 56.0% | 73.5% | 61.2% | 56 fps | 12.3 ms |
YOLOv7-D6 | 1280 | 56.6% | 74.0% | 61.8% | 44 fps | 15.0 ms |
YOLOv7-E6E | 1280 | 56.8% | 74.4% | 62.1% | 36 fps | 18.7 ms |
模型转换
可以从官方githubThe link provided in the repository is based on the downloadCOCO数据集的YOLOv7预训练模型权重.
# 下载YOLOv7官方仓库:
$ git clone [email protected]:WongKinYiu/yolov7.git
$ cd yolov7/models
$ python export.py --weights yolov7.pt
●三、模型部署●
通过Netron工具打开yolov7.onnx文件后可以看到,The official pre-trained modeloutputThe section contains the prediction results of the three feature layers,Therefore, it needs to be based on the prior box of each layer(anchor)After adjusting the output data,再进行堆叠.
由于YOLOv7The model pre- and post-processing basic sumsYOLOv5一致,Most data processing modules can be reused directly.话不多说直接上代码:
●六、运行结果●
运行python示例后,会在本地dataGenerate code in the directorybounding box以及label的图片,Here we use the horse data attached to the official repository for testing,具体结果如下:
# 运行代码
$ python YOLOV7.py -i horse.jpg -m yolov7.onnx
Github地址:
https://github.com/OpenVINO-dev-contest/YOLOv7_OpenVINO
--END--
边栏推荐
- Chapter 09 Use of Performance Analysis Tools [2. Index and Tuning] [MySQL Advanced]
- CPDA|运营人如何从负基础学会数据分析(SQL)
- [Machine Learning] 21-day Challenge Study Notes (2)
- 关于#sql shell#的问题,如何解决?
- Flink 1.15.1 集群搭建(StandaloneSession)
- PHP Skills Assessment
- 迁移学习——Distant Domain Transfer Learning
- Log an error encountered when compiling google gn "I could not find a ".gn" file ..."
- 亚马逊云科技 + 英特尔 + 中科创达为行业客户构建 AIoT 平台
- 【MySQL系列】- LIKE查询 以%开头一定会让索引失效吗
猜你喜欢
Exploding the circle of friends, Alibaba produced billion-level concurrent design quick notes are too fragrant
Tree search (bintree)
1349. 参加考试的最大学生数 状态压缩
《.NET物联网从零开始》系列
Leetcode brushing questions - 22. Bracket generation
Why is this problem reported when installing oracle11
迅睿cms网站搬迁换了服务器后网站不能正常显示
ExcelPatternTool: Excel表格-数据库互导工具
Jincang database KingbaseES V8 GIS data migration solution (3. Data migration based on ArcGIS platform to KES)
HOG特征学习笔记
随机推荐
Residential water problems
《.NET物联网从零开始》系列
JZ搜索引擎solr研究-从数据库创建索引
如何发现一个有价值的 GameFi?
进程在用户态和内核态的区别[独家解析]
习题:选择结构(一)
Short domain name bypass and xss related knowledge
DDOS攻击真的是无解吗?不!
Leetcode刷题——22. 括号生成
STM32使用stm32cubemx LL库系列教程
Use of pytorch: Convolutional Neural Network Module
ExcelPatternTool: Excel table-database mutual import tool
软件测试技术之最有效的七大性能测试技术
方法重写与Object类
意识形态的机制
树形查找(二叉查找树)
第十四天&postman
如何基于OpenVINO POT工具简单实现对模型的量化压缩
[Unity Entry Plan] Handling of Occlusion Problems in 2D Games & Pseudo Perspective
行业现状?互联网公司为什么宁愿花20k招人,也不愿涨薪留住老员工~