当前位置:网站首页>pytorch的使用:卷积神经网络模块
pytorch的使用:卷积神经网络模块
2022-08-05 00:53:00 【樱花的浪漫】
1.读取数据
- 分别构建训练集和测试集(验证集)
- DataLoader来迭代取数据
- 使用transforms将数据转换为tensor格式
# 定义超参数
input_size = 28 #图像的总尺寸28*28
num_classes = 10 #标签的种类数
num_epochs = 3 #训练的总循环周期
batch_size = 64 #一个撮(批次)的大小,64张图片
# 训练集
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
# 测试集
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
# 构建batch数据
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
1.卷积神经网络模块
pytorch与tensorflow 2相比,pytorch更注重过程,pytoch卷积模块需要指定输入通道数和输出通道数,卷积核的参数总数为卷积核K x 卷积核K x 输入通道数 x 输出通道数,卷积模块padding也需要自己计算,如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1,pytoch在计算下一层特征大小时,采用向下取整的原则,另外pytorch特征维度为batch*channels*h*w,channels在第二维度。
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # 输入大小 (1, 28, 28)
nn.Conv2d(
in_channels=1, # 灰度图
out_channels=16, # 要得到几多少个特征图
kernel_size=5, # 卷积核大小
stride=1, # 步长
padding=2, # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1
), # 输出的特征图为 (16, 28, 28)
nn.ReLU(), # relu层
nn.MaxPool2d(kernel_size=2), # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14)
)
self.conv2 = nn.Sequential( # 下一个套餐的输入 (16, 14, 14)
nn.Conv2d(16, 32, 5, 1, 2), # 输出 (32, 14, 14)
nn.ReLU(), # relu层
nn.Conv2d(32, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(2), # 输出 (32, 7, 7)
)
self.conv3 = nn.Sequential( # 下一个套餐的输入 (16, 14, 14)
nn.Conv2d(32, 64, 5, 1, 2), # 输出 (32, 14, 14)
nn.ReLU(), # 输出 (32, 7, 7)
)
self.out = nn.Linear(64 * 7 * 7, 10) # 全连接层得到的结果
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = x.view(x.size(0), -1) # flatten操作,结果为:(batch_size, 32 * 7 * 7)
output = self.out(x)
return output
3.训练网络模型
定义准确率作为验证集评估指标
def accuracy(predictions, labels):
pred = torch.max(predictions.data, 1)[1]
rights = pred.eq(labels.data.view_as(pred)).sum()
return rights, len(labels)
# 实例化
net = CNN()
#损失函数
criterion = nn.CrossEntropyLoss()
#优化器
optimizer = optim.Adam(net.parameters(), lr=0.001) #定义优化器,普通的随机梯度下降算法
#开始训练循环
for epoch in range(num_epochs):
#当前epoch的结果保存下来
train_rights = []
for batch_idx, (data, target) in enumerate(train_loader): #针对容器中的每一个批进行循环
net.train()
output = net(data)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
right = accuracy(output, target)
train_rights.append(right)
if batch_idx % 100 == 0:
net.eval()
val_rights = []
for (data, target) in test_loader:
output = net(data)
right = accuracy(output, target)
val_rights.append(right)
#准确率计算
train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))
print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(
epoch, batch_idx * batch_size, len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.data,
100. * train_r[0].numpy() / train_r[1],
100. * val_r[0].numpy() / val_r[1]))
当前epoch: 0 [0/60000 (0%)] 损失: 2.300918 训练集准确率: 10.94% 测试集正确率: 10.10% 当前epoch: 0 [6400/60000 (11%)] 损失: 0.204191 训练集准确率: 78.06% 测试集正确率: 93.31% 当前epoch: 0 [12800/60000 (21%)] 损失: 0.039503 训练集准确率: 86.51% 测试集正确率: 96.69% 当前epoch: 0 [19200/60000 (32%)] 损失: 0.057866 训练集准确率: 89.93% 测试集正确率: 97.54% 当前epoch: 0 [25600/60000 (43%)] 损失: 0.069566 训练集准确率: 91.68% 测试集正确率: 97.68% 当前epoch: 0 [32000/60000 (53%)] 损失: 0.228793 训练集准确率: 92.85% 测试集正确率: 98.18% 当前epoch: 0 [38400/60000 (64%)] 损失: 0.111003 训练集准确率: 93.72% 测试集正确率: 98.16% 当前epoch: 0 [44800/60000 (75%)] 损失: 0.110226 训练集准确率: 94.28% 测试集正确率: 98.44% 当前epoch: 0 [51200/60000 (85%)] 损失: 0.014538 训练集准确率: 94.78% 测试集正确率: 98.60% 当前epoch: 0 [57600/60000 (96%)] 损失: 0.051019 训练集准确率: 95.14% 测试集正确率: 98.45% 当前epoch: 1 [0/60000 (0%)] 损失: 0.036383 训练集准确率: 98.44% 测试集正确率: 98.68% 当前epoch: 1 [6400/60000 (11%)] 损失: 0.088116 训练集准确率: 98.50% 测试集正确率: 98.37% 当前epoch: 1 [12800/60000 (21%)] 损失: 0.120306 训练集准确率: 98.59% 测试集正确率: 98.97% 当前epoch: 1 [19200/60000 (32%)] 损失: 0.030676 训练集准确率: 98.63% 测试集正确率: 98.83% 当前epoch: 1 [25600/60000 (43%)] 损失: 0.068475 训练集准确率: 98.59% 测试集正确率: 98.87% 当前epoch: 1 [32000/60000 (53%)] 损失: 0.033244 训练集准确率: 98.62% 测试集正确率: 99.03% 当前epoch: 1 [38400/60000 (64%)] 损失: 0.024162 训练集准确率: 98.67% 测试集正确率: 98.81% 当前epoch: 1 [44800/60000 (75%)] 损失: 0.006713 训练集准确率: 98.69% 测试集正确率: 98.17% 当前epoch: 1 [51200/60000 (85%)] 损失: 0.009284 训练集准确率: 98.69% 测试集正确率: 98.97% 当前epoch: 1 [57600/60000 (96%)] 损失: 0.036536 训练集准确率: 98.68% 测试集正确率: 98.97% 当前epoch: 2 [0/60000 (0%)] 损失: 0.125235 训练集准确率: 98.44% 测试集正确率: 98.73% 当前epoch: 2 [6400/60000 (11%)] 损失: 0.028075 训练集准确率: 99.13% 测试集正确率: 99.17% 当前epoch: 2 [12800/60000 (21%)] 损失: 0.029663 训练集准确率: 99.26% 测试集正确率: 98.39% 当前epoch: 2 [19200/60000 (32%)] 损失: 0.073855 训练集准确率: 99.20% 测试集正确率: 98.81% 当前epoch: 2 [25600/60000 (43%)] 损失: 0.018130 训练集准确率: 99.16% 测试集正确率: 99.09% 当前epoch: 2 [32000/60000 (53%)] 损失: 0.006968 训练集准确率: 99.15% 测试集正确率: 99.11%
边栏推荐
- Introduction to JVM class loading
- EL定时刷新页面中的皕杰报表实例
- 内存取证系列1
- Inter-process communication and inter-thread communication
- 2022牛客多校训练第二场 L题 Link with Level Editor I
- GCC:编译时库路径和运行时库路径
- If capturable=False, state_steps should not be CUDA tensors
- 执掌图表
- Software testing interview questions: the difference and connection between black box testing, white box testing, and unit testing, integration testing, system testing, and acceptance testing?
- GCC: paths to header and library files
猜你喜欢
随机推荐
多线程涉及的其它知识(死锁(等待唤醒机制),内存可见性问题以及定时器)
GCC:编译时库路径和运行时库路径
第十一章 开关级建模
2022杭电多校第三场 K题 Taxi
JUC thread pool (1): FutureTask use
FSAWS 的全球基础设施和网络
[230] Execute command error after connecting to Redis MISCONF Redis is configured to save RDB snapshots
Lattice PCIe 学习 1
3. pcie.v file
torch.autograd.grad求二阶导数
The principle of NMS and its code realization
如何用 Solidity 创建一个“Hello World”智能合约
Software Testing Interview Questions: What Are the Types of Software Testing?
2022 Hangzhou Electric Multi-School Training Session 3 1009 Package Delivery
2022杭电多校第三场 L题 Two Permutations
Matlab uses plotting method for data simulation and simulation
"No title"
Software testing interview questions: How many types of software are there?
Getting Started with Kubernetes Networking
sqlite--nested exception is org.apache.ibatis.exceptions.PersistenceException: