Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

Overview

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object.

Build Status codecov Documentation Install with PyPi

oneFace is an easy way to create interfaces in Python, just decorate your function and mark the type and range of the arguments:

from oneface import one, Arg

@one
def bmi(name: Arg(str),
        height: Arg(float, [100, 250]) = 160,
        weight: Arg(float, [0, 300]) = 50.0):
    BMI = weight / (height / 100) ** 2
    print(f"Hi {name}. Your BMI is: {BMI}")
    return BMI


# run cli
bmi.cli()
# or run qt_gui
bmi.qt_gui()
# or run dash web app
bmi.dash_app()

These code will generate the following interfaces:

CLI Qt Dash
CLI Qt Dash

Features

  • Generate CLI, Qt GUI, Dash Web app from a python function.
  • Automatically check the type and range of input parameters and pretty print them.
  • Easy extension of parameter types and GUI widgets.

Detail usage see the documentation and pythondig.

Installation

To install oneFace with complete dependency:

$ pip install oneface[all]

Or install with just qt or dash dependency:

$ pip install oneface[qt]  # qt
$ pip install oneface[dash]  # dash
Comments
  • Wrap CLI

    Wrap CLI

    Wrap a CLI program to a GUI/Web interface app.

    Using a .yaml as config to specify the arguments:

    # open_browser_oneface.yaml
    name: open_browser
    
    command: python -m webbrowser {is_tab} {url} 
    
    arguments:
    
      is_tab:
        type: bool
        true_content: "-t"
        false_content: ""
    
      url:
        type: str
    

    Launch the app with:

    $ python -m onface.wrap_cli run open_browser_oneface.yaml qt_gui
    

    It will get a GUI app.

    enhancement 
    opened by Nanguage 1
  • A Thanks Message

    A Thanks Message

    Hello, i am Onur, i am a CTO of a community that develop Blockchain based Decentralized Application Network. This repository have a very good idea. All contributor of this project and me should develop this project and use in the other project. Let's not stop developing.

    Onur Atakan ULUSOY - CTO of Decentra Network Community

    opened by onuratakan 1
  • Implicit Arg convert from Python builtin types

    Implicit Arg convert from Python builtin types

    Allow type annotation with python builtin types, for example:

    from oneface import one, Arg
    
    @one
    def bmi(name: str,
            height: (float, [100, 250]) = 160,
            weight: (float, [0, 300]) = 50.0):
        BMI = weight / (height / 100) ** 2
        print(f"Hi {name}. Your BMI is: {BMI}")
        return BMI
    
    # run cli
    bmi.cli()
    

    Let the annotation automatically convert to Arg when parse the parameters.

    enhancement 
    opened by Nanguage 1
  • Integrate generated qt window to a Qt app.

    Integrate generated qt window to a Qt app.

    import sys
    from oneface.qt import qt_window
    from oneface import one
    from qtpy import QtWidgets
    
    app = QtWidgets.QApplication([])
    
    
    @qt_window
    @one
    def add(a: int, b: int):
        return a + b
    
    @qt_window
    @one
    def mul(a: int, b: int):
        return a * b
    
    
    main_window = QtWidgets.QWidget()
    main_window.setWindowTitle("MyApp")
    main_window.setFixedSize(200, 100)
    layout = QtWidgets.QVBoxLayout(main_window)
    layout.addWidget(QtWidgets.QLabel("Apps:"))
    btn_open_add = QtWidgets.QPushButton("add")
    btn_open_mul = QtWidgets.QPushButton("mul")
    btn_open_add.clicked.connect(add.show)
    btn_open_mul.clicked.connect(mul.show)
    layout.addWidget(btn_open_add)
    layout.addWidget(btn_open_mul)
    main_window.show()
    
    sys.exit(app.exec())
    
    enhancement 
    opened by Nanguage 0
  • Dash: the 'plotly' result_result_type

    Dash: the 'plotly' result_result_type

    Allow render the result with ploty. The wraped function return a plotly figure object:

    from oneface import one, Arg
    import plotly.express as px
    import numpy as np
    
    @one
    def draw_random_points(n: Arg[int, [1, 10000]] = 100):
        x, y = np.random.random(n), np.random.random(n)
        fig = px.scatter(x=x, y=y)
        return fig
    
    draw_random_points.dash_app(
        result_show_type='plotly',
        debug=True)
    
    enhancement 
    opened by Nanguage 0
  • Flask integration of dash app

    Flask integration of dash app

    Embeding the generated dash app as a route of flask server.

    # demo_flask_integrate.py
    from flask import Flask
    from oneface.dash_app import flask_route
    from oneface.core import one
    
    server = Flask("test_dash_app")
    
    @flask_route(server, "/add")
    @one
    def add(a: int, b: int) -> int:
        return a + b
    
    @flask_route(server, "/mul")
    @one
    def mul(a: int, b: int) -> int:
        return a * b
    
    server.run("127.0.0.1", 8088)
    

    Run this will launch a flask server support run multiple dash app from different route.

    References:

    • https://blog.finxter.com/dash-flask/
    enhancement 
    opened by Nanguage 0
  • Define custom dash commpont to support complex input type.

    Define custom dash commpont to support complex input type.

    For example:

    from oneface import one, Arg
    from oneface.dash_app import App, InputItem
    from dash import dcc, html
    
    class Person:
        def __init__(self, name, age):
            self.name = name
            self.age = age
    
    
    def check_person_type(val, tp):
        return (
            isinstance(val, tp) and
            isinstance(val.name, str) and
            isinstance(val.age, int)
        )
    
    Arg.register_type_check(Person, check_person_type)
    Arg.register_range_check(Person, lambda val, range: range[0] <= val.age <= range[1])
    
    class PersonInputItem(InputItem):
        def get_input(self):
            if self.default:
                default_val = f"Person('{self.default.name}', {self.default.age})"
            else:
                default_val = ""
            return dcc.Input(
                placeholder="example: Person('age', 20)",
                type="text",
                value=default_val,
                style={
                    "width": "100%",
                    "height": "40px",
                    "margin": "5px",
                    "font-size": "20px",
                }
            )
    
    
    App.register_widget(Person, PersonInputItem)
    App.register_type_convert(Person, lambda s: eval(s))
    
    
    @one
    def print_person(person: Arg(Person, [0, 100]) = Person("Tom", 10)):
        print(f"{person.name} is {person.age} years old.")
    
    
    print_person.dash_app()
    
    

    This code using the serialized input Person, how to define a "Composite components" in dash to support Person input? Just like in Qt:

    image

    question 
    opened by Nanguage 0
Releases(0.1.9)
Visualize tensors in a plain Python REPL using Sparklines

Visualize tensors in a plain Python REPL using Sparklines

Shawn Presser 43 Sep 03, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
An interactive UMAP visualization of the MNIST data set.

Code for an interactive UMAP visualization of the MNIST data set. Demo at https://grantcuster.github.io/umap-explorer/. You can read more about the de

grant 70 Dec 27, 2022
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Bokeh Plotting Backend for Pandas and GeoPandas

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of

Patrik Hlobil 822 Jan 07, 2023
Set of matplotlib operations that are not trivial

Matplotlib Snippets This repository contains a set of matplotlib operations that are not trivial. Histograms Histogram with bins adapted to log scale

Raphael Meudec 1 Nov 15, 2021
A script written in Python that generate output custom color (HEX or RGB input to x1b hexadecimal)

ColorShell ─ 1.5 Planned for v2: setup.sh for setup alias This script converts HEX and RGB code to x1b x1b is code for colorize outputs, works on ou

Riley 4 Oct 31, 2021
A tool for creating SVG timelines from simple JSON input.

A tool for creating SVG timelines from simple JSON input.

Jason Reisman 432 Dec 30, 2022
GUI for visualization and interactive editing of SMPL-family body models ie. SMPL, SMPL-X, MANO, FLAME.

Body Model Visualizer Introduction This is a simple Open3D-based GUI for SMPL-family body models. This GUI lets you play with the shape, expression, a

Muhammed Kocabas 207 Jan 01, 2023
DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

1 Jan 03, 2022
Draw tree diagrams from indented text input

Draw tree diagrams This repository contains two very different scripts to produce hierarchical tree diagrams like this one: $ ./classtree.py collectio

Luciano Ramalho 8 Dec 14, 2022
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
Bioinformatics tool for exploring RNA-Protein interactions

Explore RNA-Protein interactions. RNPFind is a bioinformatics tool. It takes an RNA transcript as input and gives a list of RNA binding protein (RBP)

Nahin Khan 3 Jan 27, 2022
DrawBot lets you draw images taken from the internet on Skribbl.io, Gartic Phone and Paint

DrawBot You don't speak french? No worries, english translation is over here. C'est quoi ? DrawBot est un logiciel codé par V2F qui va prendre possess

V2F 205 Jan 01, 2023
High-level geospatial data visualization library for Python.

geoplot: geospatial data visualization geoplot is a high-level Python geospatial plotting library. It's an extension to cartopy and matplotlib which m

Aleksey Bilogur 1k Jan 01, 2023
Python module for drawing and rendering beautiful atoms and molecules using Blender.

Batoms is a Python package for editing and rendering atoms and molecules objects using blender. A Python interface that allows for automating workflows.

Xing Wang 1 Jul 06, 2022
Graphical visualizer for spectralyze by Lauchmelder23

spectralyze visualizer Graphical visualizer for spectralyze by Lauchmelder23 Install Install matplotlib and ffmpeg. Put ffmpeg.exe in same folder as v

Matthew 1 Dec 21, 2021
Eulera Dashboard is an easy and intuitive way to get a quick feel of what’s happening on the world’s market.

an easy and intuitive way to get a quick feel of what’s happening on the world’s market ! Eulera dashboard is a tool allows you to monitor historical

Salah Eddine LABIAD 4 Nov 25, 2022