Code for the Lovász-Softmax loss (CVPR 2018)

Overview

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks

Maxim Berman, Amal Rannen Triki, Matthew B. Blaschko

ESAT-PSI, KU Leuven, Belgium.

Published in CVPR 2018. See project page, arxiv paper, paper on CVF open access.

PyTorch implementation of the loss layer (pytorch folder)

Files included:

  • lovasz_losses.py: Standalone PyTorch implementation of the Lovász hinge and Lovász-Softmax for the Jaccard index
  • demo_binary.ipynb: Jupyter notebook showcasing binary training of a linear model, with the Lovász Hinge and with the Lovász-Sigmoid.
  • demo_multiclass.ipynb: Jupyter notebook showcasing multiclass training of a linear model with the Lovász-Softmax

The binary lovasz_hinge expects real-valued scores (positive scores correspond to foreground pixels).

The multiclass lovasz_softmax expect class probabilities (the maximum scoring category is predicted). First use a Softmax layer on the unnormalized scores.

TensorFlow implementation of the loss layer (tensorflow folder)

Files included:

  • lovasz_losses_tf.py: Standalone TensorFlow implementation of the Lovász hinge and Lovász-Softmax for the Jaccard index
  • demo_binary_tf.ipynb: Jupyter notebook showcasing binary training of a linear model, with the Lovász Hinge and with the Lovász-Sigmoid.
  • demo_multiclass_tf.ipynb: Jupyter notebook showcasing the application of the multiclass loss with the Lovász-Softmax

Warning: the losses values and gradients have been tested to be the same as in PyTorch (see notebooks), however we have not used the TF implementation in a training setting.

Usage

See the demos for simple proofs of principle.

FAQ

  • How should I use the Lovász-Softmax loss?

The loss can be optimized on its own, but the optimal optimization hyperparameters (learning rates, momentum) might be different from the best ones for cross-entropy. As discussed in the paper, optimizing the dataset-mIoU (Pascal VOC measure) is dependent on the batch size and number of classes. Therefore you might have best results by optimizing with cross-entropy first and finetuning with our loss, or by combining the two losses.

See for example how the work Land Cover Classification From Satellite Imagery With U-Net and Lovasz-Softmax Loss by Alexander Rakhlin et al. used our loss in the CVPR 18 DeepGlobe challenge.

  • Inference in Tensorflow is very slow...

Compiling from Tensorflow master (or using a future distribution that includes commit tensorflow/[email protected]) should solve this problem; see issue #6.

Citation

Please cite

@inproceedings{berman2018lovasz,
  title={The Lov{\'a}sz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks},
  author={Berman, Maxim and Rannen Triki, Amal and Blaschko, Matthew B},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4413--4421},
  year={2018}
}
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021