Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Overview

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Code for the paper:

Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling", NeurIPS 2021. [arxiv] [bibtex]

Non-Newtonian Momentum Animation:

This repo contains code for implementing Energy Sampling Hamiltonian Dynamics, so-called because the Hamiltonian dynamics with this special form of Non-Newtonian momentum ergodically samples from a target un-normalized density specified by an energy function.

Requirements

The core ESH dynamics sampler code (import esh) uses only PyTorch.

python -m pip install git+https://github.com/gregversteeg/esh_dynamics

Use pip install -r requirements.txt to install requirements for all comparison code.

Usage

Here's a small example where we load a pytorch energy function, then sample Langevin versus ESH trajectories.

import torch as t
import esh  # ESH Dynamics integrator
from esh.datasets import ToyDataset  # Example energy models
from esh.samplers import hmc_integrate  # Sampling comparison methods, like Langevin

# Energy to sample - any pytorch function/module that outputs a scalar per batch item
energy = ToyDataset(toy_type='gmm').energy  # Gaussian mixture model

epsilon = 0.01  # Step size should be < 1
n_steps = 100  # Number of steps to take
x0 = t.tensor([[0., 0.5]])  # Initial state, size (batch_size, ...)
xs, vs, rs = esh.leap_integrate_chain(energy, x0, n_steps, epsilon, store=True)  # "Store" returns whole trajectory
xs_ula, vs_ula, _ = hmc_integrate(energy, x0, n_steps, epsilon=epsilon, k=1, mh_reject=False)  # Unadjusted Langevin Alg

To get just the last state instead of the whole trajectory, set store=False. To do ergodic reservoir sampling, set reservoir=True, store=False.

Generating figures

See the README in the generate_figures for scripts to generate each figure in the paper, and to see more example usage.

BibTeX

@inproceedings{esh,
  title={Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling},
  author={Greg {Ver Steeg} and Aram Galstyan},
  Booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}
Owner
Greg Ver Steeg
Research professor at USC
Greg Ver Steeg
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023