A curated list and survey of awesome Vision Transformers.

Overview
awesome-vit

English | 简体中文

A curated list and survey of awesome Vision Transformers.

You can use mind mapping software to open the mind mapping source file. You can also download the mind mapping HD pictures if you just want to browse them.

Contents

Survey

Only typical algorithms are listed in each category.

Image Classification

Chinese Blogs

Attention-based

image

Training Strategy

image

  • [DeiT] Training data-efficient image transformers & distillation through attention (ICML 2021-2020.12) [Paper]
  • [Token Labeling] All Tokens Matter: Token Labeling for Training Better Vision Transformers (2021.4) [Paper]
Model Improvements
Tokenization Module

image

Image to Token:

  • Non-overlapping Patch Embedding

    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [TNT] Transformer in Transformer (NeurIPS 2021-2021.3) [Paper]
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
  • Overlapping Patch Embedding

    • [T2T-ViT] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (2021.1) [Paper]

    • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]

    • [PVTv2] PVTv2: Improved Baselines with Pyramid Vision Transformer (2021.6) [Paper]

    • [ViTAE] ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias (2021.6) [Paper]

    • [PS-ViT] Vision Transformer with Progressive Sampling (2021.8) [Paper]

Token to Token:

  • Fixed sampling window tokenization
    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
  • Dynamic sampling tokenization
    • [PS-ViT] Vision Transformer with Progressive Sampling (2021.8) [Paper]
    • [TokenLearner] TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? (2021.6) [Paper]
Position Encoding Module

image

Explicit position encoding:

  • Absolute position encoding
    • [Transformer] Attention is All You Need] (NIPS 2017-2017.06) [Paper]
    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [PVT] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions (2021.2) [Paper]
  • Relative position encoding
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
    • [Swin Transformer V2] Swin Transformer V2: Scaling Up Capacity and Resolution (2021.11) [Paper]
    • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]

Implicit position encoding:

  • [CPVT] Conditional Positional Encodings for Vision Transformers (2021.2) [Paper]
  • [CSWin Transformer] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows (2021.07) [Paper]
  • [PVTv2] PVTv2: Improved Baselines with Pyramid Vision Transformer (2021.6) [Paper]
  • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]
Attention Module

image

Include only global attention:

  • Multi-Head attention module

    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
  • Reduce global attention computation

    • [PVT] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions (2021.2) [Paper]

    • [PVTv2] PVTv2: Improved Baselines with Pyramid Vision Transformer (2021.6) [Paper]

    • [Twins] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (2021.4) [Paper]

    • [P2T] P2T: Pyramid Pooling Transformer for Scene Understanding (2021.6) [Paper]

    • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]

    • [MViT] Multiscale Vision Transformers (2021.4) [Paper]

    • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]

  • Generalized linear attention

    • [T2T-ViT] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (2021.1) [Paper]

Introduce extra local attention:

  • Local window mode

    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
    • [Swin Transformer V2] Swin Transformer V2: Scaling Up Capacity and Resolution (2021.11) [Paper]
    • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]
    • [Twins] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (2021.4) [Paper]
    • [GG-Transformer] Glance-and-Gaze Vision Transformer (2021.6) [Paper]
    • [Shuffle Transformer] Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer (2021.6) [Paper]
    • [MSG-Transformer] MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens (2021.5) [Paper]
    • [CSWin Transformer] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows (2021.07) [Paper]
  • Introduce convolutional local inductive bias

    • [ViTAE] ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias (2021.6) [Paper]
    • [ELSA] ELSA: Enhanced Local Self-Attention for Vision Transformer (2021.12) [Paper]
  • Sparse attention

    • [Sparse Transformer] Sparse Transformer: Concentrated Attention Through Explicit Selection [Paper]
FFN Module

image

Improve performance with Conv's local information extraction capability:

  • [LocalViT] LocalViT: Bringing Locality to Vision Transformers (2021.4) [Paper]
  • [CeiT] Incorporating Convolution Designs into Visual Transformers (2021.3) [Paper]
Normalization Module Location

image

  • Pre Normalization

    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
  • Post Normalization

    • [Swin Transformer V2] Swin Transformer V2: Scaling Up Capacity and Resolution (2021.11) [Paper]
Classification Prediction Head Module

image

  • Class Tokens

    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [CeiT] Incorporating Convolution Designs into Visual Transformers (2021.3) [Paper]
  • Avgerage Pooling

    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
    • [CPVT] Conditional Positional Encodings for Vision Transformers (2021.2) [Paper]
    • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]
Others

image

(1) How to output multi-scale feature map

  • Patch merging

    • [PVT] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions (2021.2) [Paper]
    • [Twins] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (2021.4) [Paper]
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
    • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]
    • [CSWin Transformer] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows (2021.07) [Paper]
    • [MetaFormer] MetaFormer is Actually What You Need for Vision (2021.11) [Paper]
  • Pooling attention

    • [MViT] Multiscale Vision Transformers (2021.4) [Paper][Imporved MViT]

    • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]

  • Dilation convolution

    • [ViTAE] ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias (2021.6) [Paper]

(2) How to train a deeper Transformer

  • [Cait] Going deeper with Image Transformers (2021.3) [Paper]
  • [DeepViT] DeepViT: Towards Deeper Vision Transformer (2021.3) [Paper]

MLP-based

image

  • [MLP-Mixer] MLP-Mixer: An all-MLP Architecture for Vision (2021.5) [Paper]

  • [ResMLP] ResMLP: Feedforward networks for image classification with data-efficient training (CVPR2021-2021.5) [Paper]

  • [gMLP] Pay Attention to MLPs (2021.5) [Paper]

  • [CycleMLP] CycleMLP: A MLP-like Architecture for Dense Prediction (2021.7) [Paper]

ConvMixer-based

  • [ConvMixer] Patches Are All You Need [Paper]

General Architecture Analysis

image

  • Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight (2021.6) [Paper]
  • A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP (2021.8) [Paper]
  • [MetaFormer] MetaFormer is Actually What You Need for Vision (2021.11) [Paper]
  • [ConvNeXt] A ConvNet for the 2020s (2022.01) [Paper]

Others

Object Detection

Semantic Segmentation

back to top

Papers

Transformer Original Paper

  • [Transformer] Attention is All You Need] (NIPS 2017-2017.06) [Paper]

ViT Original Paper

  • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]

Image Classification

2020

  • [DeiT] Training data-efficient image transformers & distillation through attention (ICML 2021-2020.12) [Paper]
  • [Sparse Transformer] Sparse Transformer: Concentrated Attention Through Explicit Selection [Paper]

2021

  • [T2T-ViT] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (2021.1) [Paper]

  • [PVT] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions (2021.2) [Paper]

  • [CPVT] Conditional Positional Encodings for Vision Transformers (2021.2) [Paper]

  • [TNT] Transformer in Transformer (NeurIPS 2021-2021.3) [Paper]

  • [Cait] Going deeper with Image Transformers (2021.3) [Paper]

  • [DeepViT] DeepViT: Towards Deeper Vision Transformer (2021.3) [Paper]

  • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]

  • [CeiT] Incorporating Convolution Designs into Visual Transformers (2021.3) [Paper]

  • [LocalViT] LocalViT: Bringing Locality to Vision Transformers (2021.4) [Paper]

  • [MViT] Multiscale Vision Transformers (2021.4) [Paper]

  • [Twins] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (2021.4) [Paper]

  • [Token Labeling] All Tokens Matter: Token Labeling for Training Better Vision Transformers (2021.4) [Paper]

  • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]

  • [MLP-Mixer] MLP-Mixer: An all-MLP Architecture for Vision (2021.5) [Paper]

  • [ResMLP] ResMLP: Feedforward networks for image classification with data-efficient training (CVPR2021-2021.5) [Paper]

  • [gMLP] Pay Attention to MLPs (2021.5) [Paper]

  • [MSG-Transformer] MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens (2021.5) [Paper]

  • [PVTv2] PVTv2: Improved Baselines with Pyramid Vision Transformer (2021.6) [Paper]

  • [TokenLearner] TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? (2021.6) [Paper]

  • Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight (2021.6) [Paper]

  • [P2T] P2T: Pyramid Pooling Transformer for Scene Understanding (2021.6) [Paper]

  • [GG-Transformer] Glance-and-Gaze Vision Transformer (2021.6) [Paper]

  • [Shuffle Transformer] Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer (2021.6) [Paper]

  • [ViTAE] ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias (2021.6) [Paper]

  • [CycleMLP] CycleMLP: A MLP-like Architecture for Dense Prediction (2021.7) [Paper]

  • [CSWin Transformer] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows (2021.07) [Paper]

  • [PS-ViT] Vision Transformer with Progressive Sampling (2021.8) [Paper]

  • A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP (2021.8) [Paper]

  • [Swin Transformer V2] Swin Transformer V2: Scaling Up Capacity and Resolution (2021.11) [Paper]

  • [MetaFormer] MetaFormer is Actually What You Need for Vision (2021.11) [Paper]

  • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]

  • [ELSA] ELSA: Enhanced Local Self-Attention for Vision Transformer (2021.12) [Paper]

  • [ConvMixer] Patches Are All You Need [Paper]

2022

  • [ConvNeXt] A ConvNet for the 2020s (2022.01) [Paper]

Object Detection

Semantic Segmentation

back to top

Stay tuned and PRs are welcomed!

Owner
OpenMMLab
OpenMMLab
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022