ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

Overview

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of representative open-source network servers for popular protocols (e.g., TLS, SSH, SMTP, FTP, SIP), and tools to automate experimentation.

Citing ProFuzzBench

ProFuzzBench has been accepted for publication as a Tool Demonstrations paper at the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA) 2021.

@inproceedings{profuzzbench,
  title={ProFuzzBench: A Benchmark for Stateful Protocol Fuzzing},
  author={Roberto Natella and Van-Thuan Pham},
  booktitle={Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis},
  year={2021}
}

Folder structure

protocol-fuzzing-benchmark
├── subjects: this folder contains all protocols included in this benchmark and
│   │         each protocol may have more than one target server
│   └── RTSP
│   └── FTP
│   │   └── LightFTP
│   │       └── Dockerfile: subject-specific Dockerfile
│   │       └── run.sh: (subject-specific) main script to run experiment inside a container
│   │       └── cov_script.sh: (subject-specific) script to do code coverage analysis
│   │       └── other files (e.g., patches, other subject-specific scripts)
│   └── ...
└── scripts: this folder contains all scripts to run experiments, collect & analyze results
│   └── execution
│   │   └── profuzzbench_exec_common.sh: main script to spawn containers and run experiments on them
│   │   └── ...
│   └── analysis
│       └── profuzzbench_generate_csv.sh: this script collect code coverage results from different runs
│       └── profuzzbench_plot.py: sample script for plotting
└── README.md

Tutorial - Fuzzing LightFTP server with AFLNet and AFLnwe, a network-enabled version of AFL

Follow the steps below to run and collect experimental results for LightFTP, which is a lightweight File Transfer Protocol (FTP) server. The similar steps should be followed to run experiments on other subjects. Each subject program comes with a README.md file showing subject-specific commands to run experiments.

Step-0. Set up environmental variables

git clone https://github.com/profuzzbench/profuzzbench.git
cd profuzzbench
export PFBENCH=$(pwd)
export PATH=$PATH:$PFBENCH/scripts/execution:$PFBENCH/scripts/analysis

Step-1. Build a docker image

The following commands create a docker image tagged lightftp. The image should have everything available for fuzzing and code coverage collection.

cd $PFBENCH
cd subjects/FTP/LightFTP
docker build . -t lightftp

Step-2. Run fuzzing

Run profuzzbench_exec_common.sh script to start an experiment. The script takes 8 arguments as listed below.

  • 1st argument (DOCIMAGE) : name of the docker image
  • 2nd argument (RUNS) : number of runs, one isolated Docker container is spawned for each run
  • 3rd argument (SAVETO) : path to a folder keeping the results
  • 4th argument (FUZZER) : fuzzer name (e.g., aflnet) -- this name must match the name of the fuzzer folder inside the Docker container (e.g., /home/ubuntu/aflnet)
  • 5th argument (OUTDIR) : name of the output folder created inside the docker container
  • 6th argument (OPTIONS) : all options needed for fuzzing in addition to the standard options written in the target-specific run.sh script
  • 7th argument (TIMEOUT) : time for fuzzing in seconds
  • 8th argument (SKIPCOUNT): used for calculating coverage over time. e.g., SKIPCOUNT=5 means we run gcovr after every 5 test cases because gcovr takes time and we do not want to run it after every single test case

The following commands run 4 instances of AFLNet and 4 instances of AFLnwe to simultaenously fuzz LightFTP in 60 minutes.

cd $PFBENCH
mkdir results-lightftp

profuzzbench_exec_common.sh lightftp 4 results-lightftp aflnet out-lightftp-aflnet "-P FTP -D 10000 -q 3 -s 3 -E -K -c ./ftpclean.sh" 3600 5 &
profuzzbench_exec_common.sh lightftp 4 results-lightftp aflnwe out-lightftp-aflnwe "-D 10000 -K -c ./ftpclean.sh" 3600 5

If the script runs successfully, its output should look similar to the text below.

AFLNET: Fuzzing in progress ...
AFLNET: Waiting for the following containers to stop:  f2da4b72b002 b7421386b288 cebbbc741f93 5c54104ddb86
AFLNET: Collecting results and save them to results-lightftp
AFLNET: Collecting results from container f2da4b72b002
AFLNET: Collecting results from container b7421386b288
AFLNET: Collecting results from container cebbbc741f93
AFLNET: Collecting results from container 5c54104ddb86
AFLNET: I am done!

Step-3. Collect the results

All results (in tar files) should be stored in the folder created in Step-2 (results-lightftp). Specifically, these tar files are the compressed version of output folders produced by all fuzzing instances. If the fuzzer is afl based (e.g., AFLNet, AFLnwe) each folder should contain sub-folders like crashes, hangs, queue and so on. Use profuzzbench_generate_csv.sh script to collect results in terms of code coverage over time. The script takes 5 arguments as listed below.

  • 1st argument (PROG) : name of the subject program (e.g., lightftp)
  • 2nd argument (RUNS) : number of runs
  • 3rd argument (FUZZER) : fuzzer name (e.g., aflnet)
  • 4th argument (COVFILE): CSV-formatted output file keeping the results
  • 5th argument (APPEND) : append mode; set this to 0 for the first fuzzer and 1 for the subsequent fuzzer(s).

The following commands collect the code coverage results produced by AFLNet and AFLnwe and save them to results.csv.

cd $PFBENCH/results-lightftp

profuzzbench_generate_csv.sh lightftp 4 aflnet results.csv 0
profuzzbench_generate_csv.sh lightftp 4 aflnwe results.csv 1

The results.csv file should look similar to text below. The file has six columns showing the timestamp, subject program, fuzzer name, run index, coverage type and its value. The file contains both line coverage and branch coverage over time information. Each coverage type comes with two values, in percentage (_per) and in absolute number (_abs).

time,subject,fuzzer,run,cov_type,cov
1600905795,lightftp,aflnwe,1,l_per,25.9
1600905795,lightftp,aflnwe,1,l_abs,292
1600905795,lightftp,aflnwe,1,b_per,13.3
1600905795,lightftp,aflnwe,1,b_abs,108
1600905795,lightftp,aflnwe,1,l_per,25.9
1600905795,lightftp,aflnwe,1,l_abs,292

Step-4. Analyze the results

The results collected in step 3 (i.e., results.csv) can be used for plotting. For instance, we provide a sample Python script to plot code coverage over time. Use the following command to plot the results and save it to a file.

cd $PFBENCH/results-lightftp

profuzzbench_plot.py -i results.csv -p lightftp -r 4 -c 60 -s 1 -o cov_over_time.png

This is a sample code coverage report generated by the script. Sample report

Parallel builds

To speed-up the build of Docker images, you can pass the option "-j" to make, using the MAKE_OPT environment variable and the --build-arg option of docker build. Example:

export MAKE_OPT="-j4"
docker build . -t lightftp --build-arg MAKE_OPT

FAQs

1. How do I extend ProFuzzBench?

If you want to add a new protocol and/or a new target server (of a supported protocol), please follow the above folder structure and complete the steps below. We use LightFTP as an example.

Step-1. Create a new folder containing the protocol/target server

The folder for LightFTP server is subjects/FTP/LightFTP.

Step-2. Write a Docker file for the new target server and prepare all the subject-specific scripts/files (e.g., target-specific patch, seed corpus)

The following folder structure shows all files we have prepared for fuzzing LightFTP server. Please read our paper to understand the purposes of these files.

subjects/FTP/LightFTP
├── Dockerfile (required): based on this, a target-specific Docker image is built (See Step-1 in the tutorial)
├── run.sh (required): main script to run experiment inside a container
├── cov_script.sh (required): script to do code coverage analysis
├── clean.sh (optional): script to clean server states before fuzzing to improve the stability
├── fuzzing.patch (optional): code changes needed to improve fuzzing results (e.g., remove randomness)
├── gcov.patch (required): code changes needed to support code coverage analysis (e.g., enable gcov, add a signal handler)
├── ftp.dict (optional): a dictionary containing protocol-specific tokens/keywords to support fuzzing
└── in-ftp (required): a seed corpus capturing sequences of client requests sent to the server under test.
│   │       To prepare these seeds, please follow the AFLNet tutorial at https://github.com/aflnet/aflnet.
│   │       Please use ".raw" extension for all seed inputs.
│   │
│   └── ftp_requests_full_anonymous.raw
│   └── ftp_requests_full_normal.raw
└── README.md (optional): a target-specific README containing commands to run experiments

All the required files (i.e., Dockerfile, run.sh, cov_script.sh, gcov.patch, and the seed corpus) follow some templates so that one can easily follow them to prepare files for a new target.

Step-3. Test your new target server

Once a Docker image is successfully built, you should test your commands, as written in a target-specific README.md, inside a single Docker container. For example, we run the following commands to check if everything is working for LightFTP.

//start a container
docker run -it lightftp /bin/bash

//inside the docker container
//run a 60-min fuzzing experiment using AFLNet
cd experiments
run aflnet out-lightftp-aflnet "-P FTP -D 10000 -q 3 -s 3 -E -K -c ./ftpclean.sh" 3600 5

If everything works, there should be no error messages and all the results are stored inside the out-lightftp-aflnet folder.

2. My experiment "hangs". What could be the reason(s)?

Each experiment has two parts: fuzzing and code coverage analysis. The fuzzing part should complete after the specified timeout; however, the code coverage analysis time is subject-specific and it could take several hours if the generated corpus is large or the target server is slow. You can log into the running containers to check the progress if you think your experiment hangs.

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022