An unsupervised learning framework for depth and ego-motion estimation from monocular videos

Overview

SfMLearner

This codebase implements the system described in the paper:

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe

In CVPR 2017 (Oral).

See the project webpage for more details. Please contact Tinghui Zhou ([email protected]) if you have any questions.

Prerequisites

This codebase was developed and tested with Tensorflow 1.0, CUDA 8.0 and Ubuntu 16.04.

Running the single-view depth demo

We provide the demo code for running our single-view depth prediction model. First, download the pre-trained model from this Google Drive, and put the model files under models/. Then you can use the provided ipython-notebook demo.ipynb to run the demo.

Preparing training data

In order to train the model using the provided code, the data needs to be formatted in a certain manner.

For KITTI, first download the dataset using this script provided on the official website, and then run the following command

python data/prepare_train_data.py --dataset_dir=/path/to/raw/kitti/dataset/ --dataset_name='kitti_raw_eigen' --dump_root=/path/to/resulting/formatted/data/ --seq_length=3 --img_width=416 --img_height=128 --num_threads=4

For the pose experiments, we used the KITTI odometry split, which can be downloaded here. Then you can change --dataset_name option to kitti_odom when preparing the data.

For Cityscapes, download the following packages: 1) leftImg8bit_sequence_trainvaltest.zip, 2) camera_trainvaltest.zip. Then run the following command

python data/prepare_train_data.py --dataset_dir=/path/to/cityscapes/dataset/ --dataset_name='cityscapes' --dump_root=/path/to/resulting/formatted/data/ --seq_length=3 --img_width=416 --img_height=171 --num_threads=4

Notice that for Cityscapes the img_height is set to 171 because we crop out the bottom part of the image that contains the car logo, and the resulting image will have height 128.

Training

Once the data are formatted following the above instructions, you should be able to train the model by running the following command

python train.py --dataset_dir=/path/to/the/formatted/data/ --checkpoint_dir=/where/to/store/checkpoints/ --img_width=416 --img_height=128 --batch_size=4

You can then start a tensorboard session by

tensorboard --logdir=/path/to/tensorflow/log/files --port=8888

and visualize the training progress by opening https://localhost:8888 on your browser. If everything is set up properly, you should start seeing reasonable depth prediction after ~100K iterations when training on KITTI.

Notes

After adding data augmentation and removing batch normalization (along with some other minor tweaks), we have been able to train depth models better than what was originally reported in the paper even without using additional Cityscapes data or the explainability regularization. The provided pre-trained model was trained on KITTI only with smooth weight set to 0.5, and achieved the following performance on the Eigen test split (Table 1 of the paper):

Abs Rel Sq Rel RMSE RMSE(log) Acc.1 Acc.2 Acc.3
0.183 1.595 6.709 0.270 0.734 0.902 0.959

When trained on 5-frame snippets, the pose model obtains the following performanace on the KITTI odometry split (Table 3 of the paper):

Seq. 09 Seq. 10
0.016 (std. 0.009) 0.013 (std. 0.009)

Evaluation on KITTI

Depth

We provide evaluation code for the single-view depth experiment on KITTI. First, download our predictions (~140MB) from this Google Drive and put them into kitti_eval/.

Then run

python kitti_eval/eval_depth.py --kitti_dir=/path/to/raw/kitti/dataset/ --pred_file=kitti_eval/kitti_eigen_depth_predictions.npy

If everything runs properly, you should get the numbers for Ours(CS+K) in Table 1 of the paper. To get the numbers for Ours cap 50m (CS+K), set an additional flag --max_depth=50 when executing the above command.

Pose

We provide evaluation code for the pose estimation experiment on KITTI. First, download the predictions and ground-truth pose data from this Google Drive.

Notice that all the predictions and ground-truth are 5-frame snippets with the format of timestamp tx ty tz qx qy qz qw consistent with the TUM evaluation toolkit. Then you could run

python kitti_eval/eval_pose.py --gtruth_dir=/directory/of/groundtruth/trajectory/files/ --pred_dir=/directory/of/predicted/trajectory/files/

to obtain the results reported in Table 3 of the paper. For instance, to get the results of Ours for Seq. 10 you could run

python kitti_eval/eval_pose.py --gtruth_dir=kitti_eval/pose_data/ground_truth/10/ --pred_dir=kitti_eval/pose_data/ours_results/10/

KITTI Testing code

Depth

Once you have model trained, you can obtain the single-view depth predictions on the KITTI eigen test split formatted properly for evaluation by running

python test_kitti_depth.py --dataset_dir /path/to/raw/kitti/dataset/ --output_dir /path/to/output/directory --ckpt_file /path/to/pre-trained/model/file/

Pose

We also provide sample testing code for obtaining pose predictions on the KITTI dataset with a pre-trained model. You can obtain the predictions formatted as above for pose evaluation by running

python test_kitti_pose.py --test_seq [sequence_id] --dataset_dir /path/to/KITTI/odometry/set/ --output_dir /path/to/output/directory/ --ckpt_file /path/to/pre-trained/model/file/

A sample model trained on 5-frame snippets can be downloaded at this Google Drive.

Then you can obtain predictions on, say Seq. 9, by running

python test_kitti_pose.py --test_seq 9 --dataset_dir /path/to/KITTI/odometry/set/ --output_dir /path/to/output/directory/ --ckpt_file models/model-100280

Other implementations

Pytorch (by Clement Pinard)

Disclaimer

This is the authors' implementation of the system described in the paper and not an official Google product.

Owner
Tinghui Zhou
Tinghui Zhou
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022