当前位置:网站首页>Introduction to Graph Neural Networks (GNN) "Recommended Collection"
Introduction to Graph Neural Networks (GNN) "Recommended Collection"
2022-08-02 12:33:00 【Full stack programmer webmaster】
大家好,又见面了,我是你们的朋友全栈君.
近年来,图神经网络(GNN)在社交网络、知识图、Recommender systems and even life science and other fields has been more and more widely used.GNNIn the dependencies between nodes on the map the powerful features of the model,使得与图分析相关的研究领域取得了突破.This paper describes the basic principle diagram of the neural network,And two algorithms for advanced,DeepWalk和GraphSage.
图(Graph)
在讨论GNN之前,Let's look at what is figure.在计算机科学中,Figure is made up of vertex and edge of two parts of a data structure.图GCan through the vertex setVAnd it contains the edgeE来进行描述.
According to the direction of the existence of dependencies between vertex,边可以是有向的,也可以是无向的.
图 1有向图
顶点也称为节点,在本文中,The two terms are interchangeable.
图神经网络
Map neural network is a direct effect on the graph structure of neural network.GNN的一个典型应用是节点分类,本质上,图中的每个节点都与一个标签相关联,我们希望预测未标记节点的标签.本文将介绍该论文中描述的算法,
In the node classification problem,每个节点vCan use the characteristicsx_vSaid with a tagged labelt_v相关联.The figure of a given part of the tagG,Goal is to use the tag node was used to predict the marking label.It is obtained by learning each noded维向量(状态)表示为h_v,At the same time, contain the adjacent nodes information.
x_co[v] 代表连接顶点v的边的特征,h_ne[v]代表顶点vThe neighbor node embedded said,x_ne[v]代表顶点vNeighbor node characteristics.fThe input projection is todD transfer function,由于要求出h_v的唯一解,我们应用BanachThe fixed point theory to rewrite the above equation iteration update.
H和X分别表示所有h和x的连接,通过将状态h_v以及特征x_v传递给输出函数g来计算GNN的输出.
这里的f和gCan be interpreted as the connection feed-forward neural network,L1Losses can be formulated as the following function directly:
It can be an optimized gradient descent,But the paper points out that the originalGNNThere are three main limitations:
1.If relaxed“固定点”的假设,The multilayer perceptron may be used to study the representation of a more stable,Update and delete iteration process. This is because in the original method,Different iterative use transfer functionf的相同参数,而不同MLPDifferent parameters of the layer allows stratification feature extraction;
2.Unable to process the edge information(Such as knowledge map of different edge may mean the difference between nodes relations);
3. The diversification of fixed point will limit node distribution,Therefore may not be suitable for learning node said.
Although it has put forward several kinds ofGNNVariant to solve the above problem. But they are not the focus of the paper.
DeepWalk
DeepWalk是第一个以无监督学习的节点嵌入算法.它在训练过程中类似于词嵌入.它的目的是让图中的节点分布和语料库中的单词分布都遵循幂律,如下图所示:
算法包括两个步骤:
1. 在图中的节点上执行随机游走生成节点序列;
2. 运行skip-gram,根据步骤1中生成的节点序列学习每个节点的嵌入;
在随机游走过程中,下一个节点是从前一节点的邻居统一采样.然后将每个序列截短为长度为2 | w |+1的子序列,其中w表示skip-gram中的窗口大小.如果您不熟悉skip-gram,我之前的博客文章已经向您介绍它的工作原理.
在论文中,分层softmax用于解决由于节点数量庞大而导致的softmax计算成本过高的问题.为了计算每个单独输出元素的softmax值,我们必须为所有元素k计算ek.
图 2 softmax的定义
因此,原始softmax的计算时间是 O(|V|) ,其中其中V表示图中的顶点集.
多层的softmax利用二叉树来解决softmax计算成本问题. 在二叉树中,所有叶子节点(上面所说的图中的v1,v2,… v8)都是图中的顶点. 在每个内部节点中(除了叶子节点以外的节点,也就是分枝结点),都通过一个二元分类器来决定路径的选取. 为了计算某个顶点v_k的概率,可以简单地计算沿着从根节点到叶子节点v_k的路径中的每个子路径的概率. 由于每个节点的孩子节点的概率和为1,因此在多层softmax中,所有顶点的概率之和等于1的特性仍然能够保持.如果n是叶子的数量,二叉树的最长路径由O(log(n))限定,因此,元素的计算时间复杂度将减少到O(log | V |).
图 3多层softmax
在训练DeepWalk GNN之后,模型已经学习到了每个节点的表示,如下图所示.不同的颜色在输入图中(图a)表示不同标签. 我们可以看到,在输出图中,具有相同标签的节点聚集在一起,而具有不同标签的大多数节点被正确分开.
然而,DeepWalk的主要问题是它缺乏泛化能力.每当有新节点加入到图中时,它必须重新训练模型以正确表示该节点.因此,这种GNN不适用于图中节点不断变化的动态图.
GraphSage
GraphSageProvides a solution to the problem of the,It study each node embedded in inductive way.具体来讲,Each node in its neighborhood aggregation said again.因此,Even if does not appear during the training of the new node,Also can still by the adjacent nodes correctly said.下图展示了GraphSage的算法过程:
外层forCirculation said update iteration times,而 h^k_v 表示节点v在迭代第 kEigen vector of times.在每次迭代时,Through aggregation function,A previous iterationv和vIn the field of eigen vector and weight matrixW^k来更新h^k_v.This paper puts forward three kinds of aggregate function:
1.均值聚合器:
Average aggregator take eigen vector of a node and its neighborhood average.
Compared with the original equation,It removed the pseudo code above the first5The join operation.This operation can be seen as a”skip-connection” (“跳连接”),Behind this paper will prove that it can largely improve the performance of the model.
2. LSTM聚合器:
Because the nodes in the graph does not have any order,So they randomly assigned by swap these nodes order.
3.Pool aggregator:
The operator on the adjacent vertex set elements of execution by pooling function.Below shows the maximum pool example:
You can use the average pool or any other symmetric functions to replace the maximum pool pool.Although the average pool and maximum pool aggregator performance similar to,But the pool aggregator(That is the maximum pool function)By experimental proof has the best performance. 论文使用max-poolingAs the default aggregation function.损失函数定义如下:
其中u 和v Together in a certain length of random walk in,而 v_n 是不与uThe negative samples together.This kind of loss function for nodes in the projection space closer closer to embed the node,With those who are far apart and node separation.通过这种方法,Node will get more and more of its neighborhood information.
GraphSageBy aggregating the nodes near,Can be said can be generated for invisible node embedded position.It makes the node embedded method can be applied to involved in the research field of dynamic graph,The structure of the figure of this kind of dynamic figure can be changing.例如,Pinterest采用了GraphSage的扩展版本PinSageAs they explore the content of the system at the core of the.
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/125491.html原文链接:https://javaforall.cn
边栏推荐
- 以Boost为例的type3电压环补偿器实例
- kvm部署
- Lexicon 27 - Remove Elements - Simple Questions
- Leek 151 - Reverse words in a string
- SuperSlide系列之轮播图
- Chapter 14 Manually create a REST service (2)
- 30 lines of code to realize serverless real-time health code recognition -- operation manual
- pig4cloud服务架构使用
- An example of type3 voltage loop compensator taking Boost as an example
- 网络流详解(流网图一般能够反映什么信息)
猜你喜欢
Intouch Historian历史曲线配置导入导出
photo-sphere-viewer中文文档
How to better assess credit risk?Just watch this scorecard model live
To eliminate air bubbles to save the mushroom h5 small game source code
SQL Server如何建表
FreeRTOS--stack experiment
Data Lake (2): What is Hudi
分布式限流利器,手撕&redisson实现
SuperSlide系列之轮播图
FreeRTOS experiment -- delete task
随机推荐
FreeRTOS实验--一个函数创建多个任务
SQL Server 2014 installation tutorial (nanny-level graphic tutorial)
Hand rolled architecture, 41 Redis interview asked
LeetCode_139_单词拆分
Basic operations of openGauss database (super detailed)
Swiper系列之轮播图
The use of QListView
Likou 209 - String with the Minimum Length - Sliding Window Method
An example of type3 voltage loop compensator taking Boost as an example
Lexicon 27 - Remove Elements - Simple Questions
手撸架构,Mysql 面试126问
30行代码实现无服务器实时健康码识别--操作手册
Drools(8): WorkBench uses
php - the first of three solid foundations
0801~ Interview questions
How to use the database like tap water?|Tencent Cloud Database TDSQL-C
设置代理服务器(谷歌+IE)「建议收藏」
How to better assess credit risk?Just watch this scorecard model live
30 lines of code to realize serverless real-time health code recognition -- operation manual
DTG-SSOD: The latest semi-supervised detection framework, Dense Teacher (with paper download)