当前位置:网站首页>[combinatorics] polynomial theorem (polynomial coefficients | full arrangement of multiple sets | number of schemes corresponding to the ball sub model | polynomial coefficient correlation identity)
[combinatorics] polynomial theorem (polynomial coefficients | full arrangement of multiple sets | number of schemes corresponding to the ball sub model | polynomial coefficient correlation identity)
2022-07-03 16:35:00 【Programmer community】
One 、 Polynomial coefficients
below
3
3
3 The number is equivalent :
① Polynomial coefficients
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
② The total permutation number of multiple sets
③ Put different balls in different boxes , Empty boxes are not allowed , Put a specified number of balls in each box Number of schemes ;
1 . Polynomial coefficients
Polynomial theorem
(
x
1
+
x
2
+
⋯
+
x
t
)
n
\ \ \ \ (x_1 + x_2 + \cdots + x_t)^n
(x1+x2+⋯+xt)n
=
∑
full
foot
n
1
+
n
2
+
⋯
+
n
t
=
n
Not
negative
whole
Count
Explain
individual
Count
(
n
n
1
n
2
⋯
n
t
)
x
1
n
1
x
2
n
2
⋯
x
t
n
t
= \sum\limits_{ Satisfy n_1 + n_2 + \cdots + n_t = n Number of nonnegative integer solutions }\dbinom{n}{n_1 n_2 \cdots n_t}x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}
= full foot n1+n2+⋯+nt=n Not negative whole Count Explain individual Count ∑(n1n2⋯ntn)x1n1x2n2⋯xtnt
Of ① Polynomial coefficients
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
2 . The total permutation number of multiple sets :
At the same time, it represents ② The total permutation number of multiple sets
n
!
n
1
!
n
2
!
⋯
n
k
!
\cfrac{n!}{n_1! n_2! \cdots n_k!}
n1!n2!⋯nk!n! , It can be abbreviated as
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
3 . The number of ball sub model schemes
③
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn) It can represent the number of solutions of a subtype of the ball release model ,
n
n
n Different balls , Put it in
t
t
t In a different box , Notice here The ball and There are differences between boxes ,
The first
1
1
1 A box for
n
1
n_1
n1 A ball , The first
2
2
2 A box for
n
2
n_2
n2 A ball ,
⋯
\cdots
⋯ , The first
t
t
t A box for
n
t
n_t
nt A ball Number of alternatives ;
Equivalent to multi-step processing :
- The first
1
1
n
1
n_1
n1 A ball , Put it in The first
1
1
1 In a box ; The selection methods are
(
n
n
1
)
\dbinom{n}{n_1}
(n1n) Kind of ;
1 Step : choice
- The first
2
2
n
2
n_2
n2 A ball , Put it in The first
2
2
2 In a box ; The selection methods are
(
n
−
n
1
n
2
)
\dbinom{n-n_1}{n_2}
(n2n−n1) Kind of ;
⋮
\vdots
⋮
2 Step : choice
- The first
t
t
n
t
n_t
nt A ball , Put it in The first
t
t
t In a box ; The selection methods are
(
n
−
n
1
−
n
2
−
⋯
−
n
t
−
1
n
t
)
\dbinom{n-n_1-n_2 - \cdots -n_{t-1}}{n_t}
(ntn−n1−n2−⋯−nt−1) Kind of ;
t Step : choice
According to the principle of step-by-step counting , product rule , Multiply the number of categories in each step above , Is the number of all kinds :
(
n
n
1
)
(
n
−
n
1
n
2
)
(
n
−
n
1
−
n
2
−
⋯
−
n
t
−
1
n
t
)
\ \ \ \ \dbinom{n}{n_1} \dbinom{n-n_1}{n_2} \dbinom{n-n_1-n_2 - \cdots -n_{t-1}}{n_t}
(n1n)(n2n−n1)(ntn−n1−n2−⋯−nt−1)
=
n
!
n
1
!
n
2
!
⋯
n
t
!
=\cfrac{n!}{n_1! n_2! \cdots n_t!}
=n1!n2!⋯nt!n!
=
(
n
n
1
n
2
⋯
n
t
)
=\dbinom{n}{n_1 n_2 \cdots n_t}
=(n1n2⋯ntn)
Two 、 Polynomial coefficient identity
Polynomial theorem inference 3 :
∑
(
n
n
1
n
2
⋯
n
t
)
=
t
n
\sum\dbinom{n}{n_1 n_2 \cdots n_t} = t^n
∑(n1n2⋯ntn)=tn
Full Permutation of multiple sets :
(
n
n
1
n
2
⋯
n
t
)
=
n
!
n
1
!
n
2
!
⋯
n
k
!
\dbinom{n}{n_1 n_2 \cdots n_t} = \cfrac{n!}{n_1! n_2! \cdots n_k!}
(n1n2⋯ntn)=n1!n2!⋯nk!n!
recursion :
(
n
n
1
n
2
⋯
n
t
)
=
(
n
−
1
(
n
1
−
1
)
n
2
⋯
n
t
)
+
(
n
−
1
n
1
(
n
2
−
1
)
⋯
n
t
)
+
(
n
−
1
n
1
n
2
⋯
(
n
t
−
1
)
)
\dbinom{n}{n_1 n_2 \cdots n_t} = \dbinom{n-1}{(n_1-1) n_2 \cdots n_t} + \dbinom{n-1}{n_1 (n_2 - 1) \cdots n_t}+ \dbinom{n-1}{n_1 n_2 \cdots (n_t -1)}
(n1n2⋯ntn)=((n1−1)n2⋯ntn−1)+(n1(n2−1)⋯ntn−1)+(n1n2⋯(nt−1)n−1)
Prove the above recursion :
left
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn) It is the solution to the problem of putting the ball ,
Right side
1
1
1 term
(
n
−
1
(
n
1
−
1
)
n
2
⋯
n
t
)
\dbinom{n-1}{(n_1-1) n_2 \cdots n_t}
((n1−1)n2⋯ntn−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
1
1
1 Number of schemes in boxes ;
Right side
2
2
2 term
(
n
−
1
n
1
(
n
2
−
1
)
⋯
n
t
)
\dbinom{n-1}{n_1 (n_2 - 1) \cdots n_t}
(n1(n2−1)⋯ntn−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
2
2
2 Number of schemes in boxes ;
⋮
\vdots
⋮
Right side
t
t
t term
(
n
−
1
n
1
n
2
⋯
(
n
t
−
1
)
)
\dbinom{n-1}{n_1 n_2 \cdots (n_t -1)}
(n1n2⋯(nt−1)n−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
t
t
t Number of schemes in boxes ;
边栏推荐
- PyTorch 1.12发布,正式支持苹果M1芯片GPU加速,修复众多Bug
- Is it safe to open an account with flush?
- Idea configuration plug-in
- There are several APIs of airtest and poco that are easy to use wrong in "super". See if you have encountered them
- Add color to the interface automation test framework and realize the enterprise wechat test report
- How to initialize views when loading through storyboards- How is view initialized when loaded via a storyboard?
- 消息队列消息丢失和消息重复发送的处理策略
- MySQL single table field duplicate data takes the latest SQL statement
- Everyone in remote office works together to realize cooperative editing of materials and development of documents | community essay solicitation
- word 退格键删除不了选中文本,只能按delete
猜你喜欢
0214-27100 a day with little fluctuation
MySQL single table field duplicate data takes the latest SQL statement
word 退格键删除不了选中文本,只能按delete
[combinatorics] non descending path problem (number of non descending paths with constraints)
[proteus simulation] 74hc595+74ls154 drive display 16x16 dot matrix
[solved] access denied for user 'root' @ 'localhost' (using password: yes)
Visual SLAM algorithms: a survey from 2010 to 2016
什么是质押池,如何进行质押呢?
(Supplement) double pointer topic
深入理解 SQL 中的 Grouping Sets 语句
随机推荐
Mongodb installation and basic operation
How to initialize views when loading through storyboards- How is view initialized when loaded via a storyboard?
8个酷炫可视化图表,快速写出老板爱看的可视化分析报告
8 tips for effective performance evaluation
程序猿如何快速成长
Is it safe to open an account with flush?
nifi从入门到实战(保姆级教程)——flow
[combinatorics] non descending path problem (outline of non descending path problem | basic model of non descending path problem | non descending path problem expansion model 1 non origin starting poi
AcWing 第58 场周赛
QT serial port UI design and solution to display Chinese garbled code
跟我学企业级flutter项目:简化框架demo参考
Page dynamics [2]keyframes
Pytorch 1.12 was released, officially supporting Apple M1 chip GPU acceleration and repairing many bugs
Learn from me about the enterprise flutter project: simplified framework demo reference
Unreal_DataTable 实现Id自增与设置RowName
Golang 匿名函数使用
How to set up SVN server on this machine
MySQL converts comma separated attribute field data from column to row
Google Earth engine (GEE) - daymet v4: daily surface weather data set (1000m resolution) including data acquisition methods for each day
Client does not support authentication protocol requested by server; consider upgrading MySQL client