当前位置:网站首页>[combinatorics] polynomial theorem (polynomial coefficients | full arrangement of multiple sets | number of schemes corresponding to the ball sub model | polynomial coefficient correlation identity)
[combinatorics] polynomial theorem (polynomial coefficients | full arrangement of multiple sets | number of schemes corresponding to the ball sub model | polynomial coefficient correlation identity)
2022-07-03 16:35:00 【Programmer community】
One 、 Polynomial coefficients
below
3
3
3 The number is equivalent :
① Polynomial coefficients
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
② The total permutation number of multiple sets
③ Put different balls in different boxes , Empty boxes are not allowed , Put a specified number of balls in each box Number of schemes ;
1 . Polynomial coefficients
Polynomial theorem
(
x
1
+
x
2
+
⋯
+
x
t
)
n
\ \ \ \ (x_1 + x_2 + \cdots + x_t)^n
(x1+x2+⋯+xt)n
=
∑
full
foot
n
1
+
n
2
+
⋯
+
n
t
=
n
Not
negative
whole
Count
Explain
individual
Count
(
n
n
1
n
2
⋯
n
t
)
x
1
n
1
x
2
n
2
⋯
x
t
n
t
= \sum\limits_{ Satisfy n_1 + n_2 + \cdots + n_t = n Number of nonnegative integer solutions }\dbinom{n}{n_1 n_2 \cdots n_t}x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}
= full foot n1+n2+⋯+nt=n Not negative whole Count Explain individual Count ∑(n1n2⋯ntn)x1n1x2n2⋯xtnt
Of ① Polynomial coefficients
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
2 . The total permutation number of multiple sets :
At the same time, it represents ② The total permutation number of multiple sets
n
!
n
1
!
n
2
!
⋯
n
k
!
\cfrac{n!}{n_1! n_2! \cdots n_k!}
n1!n2!⋯nk!n! , It can be abbreviated as
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
3 . The number of ball sub model schemes
③
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn) It can represent the number of solutions of a subtype of the ball release model ,
n
n
n Different balls , Put it in
t
t
t In a different box , Notice here The ball and There are differences between boxes ,
The first
1
1
1 A box for
n
1
n_1
n1 A ball , The first
2
2
2 A box for
n
2
n_2
n2 A ball ,
⋯
\cdots
⋯ , The first
t
t
t A box for
n
t
n_t
nt A ball Number of alternatives ;
Equivalent to multi-step processing :
- The first
1
1
n
1
n_1
n1 A ball , Put it in The first
1
1
1 In a box ; The selection methods are
(
n
n
1
)
\dbinom{n}{n_1}
(n1n) Kind of ;
1 Step : choice
- The first
2
2
n
2
n_2
n2 A ball , Put it in The first
2
2
2 In a box ; The selection methods are
(
n
−
n
1
n
2
)
\dbinom{n-n_1}{n_2}
(n2n−n1) Kind of ;
⋮
\vdots
⋮
2 Step : choice
- The first
t
t
n
t
n_t
nt A ball , Put it in The first
t
t
t In a box ; The selection methods are
(
n
−
n
1
−
n
2
−
⋯
−
n
t
−
1
n
t
)
\dbinom{n-n_1-n_2 - \cdots -n_{t-1}}{n_t}
(ntn−n1−n2−⋯−nt−1) Kind of ;
t Step : choice
According to the principle of step-by-step counting , product rule , Multiply the number of categories in each step above , Is the number of all kinds :
(
n
n
1
)
(
n
−
n
1
n
2
)
(
n
−
n
1
−
n
2
−
⋯
−
n
t
−
1
n
t
)
\ \ \ \ \dbinom{n}{n_1} \dbinom{n-n_1}{n_2} \dbinom{n-n_1-n_2 - \cdots -n_{t-1}}{n_t}
(n1n)(n2n−n1)(ntn−n1−n2−⋯−nt−1)
=
n
!
n
1
!
n
2
!
⋯
n
t
!
=\cfrac{n!}{n_1! n_2! \cdots n_t!}
=n1!n2!⋯nt!n!
=
(
n
n
1
n
2
⋯
n
t
)
=\dbinom{n}{n_1 n_2 \cdots n_t}
=(n1n2⋯ntn)
Two 、 Polynomial coefficient identity
Polynomial theorem inference 3 :
∑
(
n
n
1
n
2
⋯
n
t
)
=
t
n
\sum\dbinom{n}{n_1 n_2 \cdots n_t} = t^n
∑(n1n2⋯ntn)=tn
Full Permutation of multiple sets :
(
n
n
1
n
2
⋯
n
t
)
=
n
!
n
1
!
n
2
!
⋯
n
k
!
\dbinom{n}{n_1 n_2 \cdots n_t} = \cfrac{n!}{n_1! n_2! \cdots n_k!}
(n1n2⋯ntn)=n1!n2!⋯nk!n!
recursion :
(
n
n
1
n
2
⋯
n
t
)
=
(
n
−
1
(
n
1
−
1
)
n
2
⋯
n
t
)
+
(
n
−
1
n
1
(
n
2
−
1
)
⋯
n
t
)
+
(
n
−
1
n
1
n
2
⋯
(
n
t
−
1
)
)
\dbinom{n}{n_1 n_2 \cdots n_t} = \dbinom{n-1}{(n_1-1) n_2 \cdots n_t} + \dbinom{n-1}{n_1 (n_2 - 1) \cdots n_t}+ \dbinom{n-1}{n_1 n_2 \cdots (n_t -1)}
(n1n2⋯ntn)=((n1−1)n2⋯ntn−1)+(n1(n2−1)⋯ntn−1)+(n1n2⋯(nt−1)n−1)
Prove the above recursion :
left
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn) It is the solution to the problem of putting the ball ,
Right side
1
1
1 term
(
n
−
1
(
n
1
−
1
)
n
2
⋯
n
t
)
\dbinom{n-1}{(n_1-1) n_2 \cdots n_t}
((n1−1)n2⋯ntn−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
1
1
1 Number of schemes in boxes ;
Right side
2
2
2 term
(
n
−
1
n
1
(
n
2
−
1
)
⋯
n
t
)
\dbinom{n-1}{n_1 (n_2 - 1) \cdots n_t}
(n1(n2−1)⋯ntn−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
2
2
2 Number of schemes in boxes ;
⋮
\vdots
⋮
Right side
t
t
t term
(
n
−
1
n
1
n
2
⋯
(
n
t
−
1
)
)
\dbinom{n-1}{n_1 n_2 \cdots (n_t -1)}
(n1n2⋯(nt−1)n−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
t
t
t Number of schemes in boxes ;
边栏推荐
- word 退格键删除不了选中文本,只能按delete
- Custom plug-in construction and use of QT plug-in
- One article takes you to understand machine learning
- Golang 匿名函数使用
- [proteus simulation] 74hc595+74ls154 drive display 16x16 dot matrix
- (补)双指针专题
- Cocos Creator 2. X automatic packaging (build + compile)
- TCP拥塞控制详解 | 3. 设计空间
- ThreeJS 第二篇:顶点概念、几何体结构
- Unreal_DataTable 实现Id自增与设置RowName
猜你喜欢

Remote file contains actual operation

于文文、胡夏等明星带你玩转派对 皮皮APP点燃你的夏日

跟我学企业级flutter项目:简化框架demo参考

There are several APIs of airtest and poco that are easy to use wrong in "super". See if you have encountered them

(Supplement) double pointer topic

PyTorch 1.12发布,正式支持苹果M1芯片GPU加速,修复众多Bug

近视:摘镜or配镜?这些问题必须先了解清楚

(补)双指针专题

Threejs Part 2: vertex concept, geometry structure

Explore Netease's large-scale automated testing solutions see here see here
随机推荐
Is it safe to open an account with tongdaxin?
Page dynamics [2]keyframes
Data driving of appium framework for mobile terminal automated testing
Unity project optimization case 1
LeetCode1491. Average value of wages after removing the minimum wage and the maximum wage
Getting started with Message Oriented Middleware
拼夕夕二面:说说布隆过滤器与布谷鸟过滤器?应用场景?我懵了。。
在ntpdate同步时间的时候出现“the NTP socket is in use, exiting”
Mysql 将逗号隔开的属性字段数据由列转行
TCP擁塞控制詳解 | 3. 設計空間
Is it safe to open an account with flush?
Colab works with Google cloud disk
手机注册股票开户安全吗 开户需要钱吗
PHP中register_globals参数设置
Détails du contrôle de la congestion TCP | 3. Espace de conception
关于视觉SLAM的最先进技术的调查-A survey of state-of-the-art on visual SLAM
Mongodb installation and basic operation
一台服务器最大并发 tcp 连接数多少?65535?
【剑指 Offer】58 - I. 翻转单词顺序
【剑指 Offer】58 - II. 左旋转字符串