当前位置:网站首页>[combinatorics] polynomial theorem (polynomial coefficients | full arrangement of multiple sets | number of schemes corresponding to the ball sub model | polynomial coefficient correlation identity)
[combinatorics] polynomial theorem (polynomial coefficients | full arrangement of multiple sets | number of schemes corresponding to the ball sub model | polynomial coefficient correlation identity)
2022-07-03 16:35:00 【Programmer community】
One 、 Polynomial coefficients
below
3
3
3 The number is equivalent :
① Polynomial coefficients
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
② The total permutation number of multiple sets
③ Put different balls in different boxes , Empty boxes are not allowed , Put a specified number of balls in each box Number of schemes ;
1 . Polynomial coefficients
Polynomial theorem
(
x
1
+
x
2
+
⋯
+
x
t
)
n
\ \ \ \ (x_1 + x_2 + \cdots + x_t)^n
(x1+x2+⋯+xt)n
=
∑
full
foot
n
1
+
n
2
+
⋯
+
n
t
=
n
Not
negative
whole
Count
Explain
individual
Count
(
n
n
1
n
2
⋯
n
t
)
x
1
n
1
x
2
n
2
⋯
x
t
n
t
= \sum\limits_{ Satisfy n_1 + n_2 + \cdots + n_t = n Number of nonnegative integer solutions }\dbinom{n}{n_1 n_2 \cdots n_t}x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}
= full foot n1+n2+⋯+nt=n Not negative whole Count Explain individual Count ∑(n1n2⋯ntn)x1n1x2n2⋯xtnt
Of ① Polynomial coefficients
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
2 . The total permutation number of multiple sets :
At the same time, it represents ② The total permutation number of multiple sets
n
!
n
1
!
n
2
!
⋯
n
k
!
\cfrac{n!}{n_1! n_2! \cdots n_k!}
n1!n2!⋯nk!n! , It can be abbreviated as
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn)
3 . The number of ball sub model schemes
③
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn) It can represent the number of solutions of a subtype of the ball release model ,
n
n
n Different balls , Put it in
t
t
t In a different box , Notice here The ball and There are differences between boxes ,
The first
1
1
1 A box for
n
1
n_1
n1 A ball , The first
2
2
2 A box for
n
2
n_2
n2 A ball ,
⋯
\cdots
⋯ , The first
t
t
t A box for
n
t
n_t
nt A ball Number of alternatives ;
Equivalent to multi-step processing :
- The first
1
1
n
1
n_1
n1 A ball , Put it in The first
1
1
1 In a box ; The selection methods are
(
n
n
1
)
\dbinom{n}{n_1}
(n1n) Kind of ;
1 Step : choice
- The first
2
2
n
2
n_2
n2 A ball , Put it in The first
2
2
2 In a box ; The selection methods are
(
n
−
n
1
n
2
)
\dbinom{n-n_1}{n_2}
(n2n−n1) Kind of ;
⋮
\vdots
⋮
2 Step : choice
- The first
t
t
n
t
n_t
nt A ball , Put it in The first
t
t
t In a box ; The selection methods are
(
n
−
n
1
−
n
2
−
⋯
−
n
t
−
1
n
t
)
\dbinom{n-n_1-n_2 - \cdots -n_{t-1}}{n_t}
(ntn−n1−n2−⋯−nt−1) Kind of ;
t Step : choice
According to the principle of step-by-step counting , product rule , Multiply the number of categories in each step above , Is the number of all kinds :
(
n
n
1
)
(
n
−
n
1
n
2
)
(
n
−
n
1
−
n
2
−
⋯
−
n
t
−
1
n
t
)
\ \ \ \ \dbinom{n}{n_1} \dbinom{n-n_1}{n_2} \dbinom{n-n_1-n_2 - \cdots -n_{t-1}}{n_t}
(n1n)(n2n−n1)(ntn−n1−n2−⋯−nt−1)
=
n
!
n
1
!
n
2
!
⋯
n
t
!
=\cfrac{n!}{n_1! n_2! \cdots n_t!}
=n1!n2!⋯nt!n!
=
(
n
n
1
n
2
⋯
n
t
)
=\dbinom{n}{n_1 n_2 \cdots n_t}
=(n1n2⋯ntn)
Two 、 Polynomial coefficient identity
Polynomial theorem inference 3 :
∑
(
n
n
1
n
2
⋯
n
t
)
=
t
n
\sum\dbinom{n}{n_1 n_2 \cdots n_t} = t^n
∑(n1n2⋯ntn)=tn
Full Permutation of multiple sets :
(
n
n
1
n
2
⋯
n
t
)
=
n
!
n
1
!
n
2
!
⋯
n
k
!
\dbinom{n}{n_1 n_2 \cdots n_t} = \cfrac{n!}{n_1! n_2! \cdots n_k!}
(n1n2⋯ntn)=n1!n2!⋯nk!n!
recursion :
(
n
n
1
n
2
⋯
n
t
)
=
(
n
−
1
(
n
1
−
1
)
n
2
⋯
n
t
)
+
(
n
−
1
n
1
(
n
2
−
1
)
⋯
n
t
)
+
(
n
−
1
n
1
n
2
⋯
(
n
t
−
1
)
)
\dbinom{n}{n_1 n_2 \cdots n_t} = \dbinom{n-1}{(n_1-1) n_2 \cdots n_t} + \dbinom{n-1}{n_1 (n_2 - 1) \cdots n_t}+ \dbinom{n-1}{n_1 n_2 \cdots (n_t -1)}
(n1n2⋯ntn)=((n1−1)n2⋯ntn−1)+(n1(n2−1)⋯ntn−1)+(n1n2⋯(nt−1)n−1)
Prove the above recursion :
left
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn) It is the solution to the problem of putting the ball ,
Right side
1
1
1 term
(
n
−
1
(
n
1
−
1
)
n
2
⋯
n
t
)
\dbinom{n-1}{(n_1-1) n_2 \cdots n_t}
((n1−1)n2⋯ntn−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
1
1
1 Number of schemes in boxes ;
Right side
2
2
2 term
(
n
−
1
n
1
(
n
2
−
1
)
⋯
n
t
)
\dbinom{n-1}{n_1 (n_2 - 1) \cdots n_t}
(n1(n2−1)⋯ntn−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
2
2
2 Number of schemes in boxes ;
⋮
\vdots
⋮
Right side
t
t
t term
(
n
−
1
n
1
n
2
⋯
(
n
t
−
1
)
)
\dbinom{n-1}{n_1 n_2 \cdots (n_t -1)}
(n1n2⋯(nt−1)n−1) yes Specify a ball
a
1
a_1
a1 Must fall to the first
t
t
t Number of schemes in boxes ;
边栏推荐
- Add color to the interface automation test framework and realize the enterprise wechat test report
- Thread pool executes scheduled tasks
- MongoDB 的安装和基本操作
- 远程办公之大家一同实现合作编辑资料和开发文档 | 社区征文
- Construction practice camp - graduation summary of phase 6
- Svn usage specification
- 利用MySQL中的乐观锁和悲观锁实现分布式锁
- 1287. Elements that appear more than 25% in an ordered array
- Is it safe to open an account with flush?
- 疫情常态化大背景下,关于远程办公的思考|社区征文
猜你喜欢

消息队列消息丢失和消息重复发送的处理策略

arduino-esp32:LVGL项目(一)整体框架

探索Cassandra的去中心化分布式架构

Slam learning notes - build a complete gazebo multi machine simulation slam from scratch (II)

8个酷炫可视化图表,快速写出老板爱看的可视化分析报告

What is the maximum number of concurrent TCP connections for a server? 65535?

为抵制 7-Zip,列出 “三宗罪” ?网友:“第3个才是重点吧?”

Mb10m-asemi rectifier bridge mb10m

Two sides of the evening: tell me about the bloom filter and cuckoo filter? Application scenario? I'm confused..
![[web security] - [SQL injection] - error detection injection](/img/18/5c511871dab0e5c684b6b4c081c061.jpg)
[web security] - [SQL injection] - error detection injection
随机推荐
Visual SLAM algorithms: a survey from 2010 to 2016
AcWing 第58 场周赛
【剑指 Offer 】57 - II. 和为s的连续正数序列
[Jianzhi offer] 58 - ii Rotate string left
[solved] access denied for user 'root' @ 'localhost' (using password: yes)
Le zèbre a été identifié comme un chien, et la cause de l'erreur d'AI a été trouvée par Stanford
How programming apes grow rapidly
14 topics for performance interviews between superiors and subordinates (4)
切入点表达式
【剑指 Offer】58 - I. 翻转单词顺序
Myopia: take off or match glasses? These problems must be understood clearly first
Golang 装饰器模式以及在NSQ中的使用
Top k questions of interview
TCP拥塞控制详解 | 3. 设计空间
SVN使用规范
远程办公之大家一同实现合作编辑资料和开发文档 | 社区征文
一台服务器最大并发 tcp 连接数多少?65535?
Google Earth engine (GEE) - daymet v4: daily surface weather data set (1000m resolution) including data acquisition methods for each day
Client does not support authentication protocol requested by server; consider upgrading MySQL client
中南大学|通过探索理解: 发现具有深度强化学习的可解释特征