当前位置:网站首页>[combinatorics] summary of combinatorial identities (eleven combinatorial identities | proof methods of combinatorial identities | summation methods)*
[combinatorics] summary of combinatorial identities (eleven combinatorial identities | proof methods of combinatorial identities | summation methods)*
2022-07-03 16:08:00 【Programmer community】
List of articles
- One 、 Eleven combinatorial identities
- Two 、 Combinatorial identity Method of proof
- 3、 ... and 、 Combinatorial number Sum up
∑
\sum
∑ Method
Combinatorial identity reference blog :
- 【 Combinatorial mathematics 】 Binomial theorem and combinatorial identities ( binomial theorem | Three combinatorial identities recursion | recursion 1 | recursion 2 | recursion 3 Pascal / Yang Hui's trigonometric formula | Combination analysis method | Characteristics of recursive combinatorial identities )
- 【 Combinatorial mathematics 】 Combinatorial identity ( Recurrence Combinatorial identity | Change the next term to sum Combinatorial identity Simple and | Change the next term to sum Combinatorial identity Staggered and )
- 【 Combinatorial mathematics 】 Combinatorial identity ( Change the next term to sum 3 Combinatorial identity | Change the next term to sum 4 Combinatorial identity | binomial theorem + Derivation Prove the combinatorial identity | Use known combinatorial identities to prove combinatorial identities )
- 【 Combinatorial mathematics 】 Combinatorial identity ( Review of eight combinatorial identities | Combinatorial identity product 1 | prove | Use scenarios )
- 【 Combinatorial mathematics 】 Combinatorial identity ( Combinatorial identity Sum of product 1 | Sum of product 1 prove | Combinatorial identity Sum of product 2 | Sum of product 2 prove )
One 、 Eleven combinatorial identities
1 . Combinatorial identity ( recursion ) :
( 1 ) recursion 1 :
(
n
k
)
=
(
n
n
−
k
)
\dbinom{n}{k} = \dbinom{n}{n-k}
(kn)=(n−kn)①
( 2 ) recursion 2 :
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1}
(kn)=kn(k−1n−1)②
( 3 ) recursion 3 ( Pascal / Yang Hui's trigonometric formula ) :
(
n
k
)
=
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn)=(kn−1)+(k−1n−1)③
2 . Review the combinatorial identities of summation under four variables : The combinatorial identity introduced earlier The number of combinations in
(
n
k
)
\dbinom{n}{k}
(kn) , Is the next item
k
k
k Have been accumulating changes , have
∑
k
=
0
n
\sum\limits_{k=0}^{n}
k=0∑n Cumulative property , Previous item
n
n
n It is the same. ;
( 1 ) Simple and :
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n④
( 2 ) Staggered and :
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
=
0
\sum\limits_{k=0}^{n} (-1)^k \dbinom{n}{k} = 0
k=0∑n(−1)k(kn)=0⑤
( 3 ) Change the next term to sum 3 :
∑
k
=
0
n
k
(
n
k
)
=
n
2
n
−
1
\sum\limits_{k=0}^{n} k \dbinom{n}{k} = n 2^{n-1}
k=0∑nk(kn)=n2n−1⑥
( 4 ) Change the next term to sum 4 :
∑
k
=
0
n
k
2
(
n
k
)
=
n
(
n
+
1
)
2
n
−
2
\sum_{k=0}^{n} k^2 \dbinom{n}{k} = n ( n+1 ) 2^{n-2}
∑k=0nk2(kn)=n(n+1)2n−2⑦
3 . Change the upper term to sum :
∑
l
=
0
n
(
l
k
)
=
(
n
+
1
k
+
1
)
\sum\limits_{l=0}^{n} \dbinom{l}{k} = \dbinom{n + 1}{k + 1}
l=0∑n(kl)=(k+1n+1)⑧
4 . product :
∑
l
=
0
n
(
l
k
)
=
(
n
+
1
k
+
1
)
\sum\limits_{l=0}^{n} \dbinom{l}{k} = \dbinom{n + 1}{k + 1}
l=0∑n(kl)=(k+1n+1)⑨
5 . Sum of product :
( 1 ) Combinatorial identity ( Sum of product ) 1 :
∑
k
=
0
r
(
m
k
)
(
n
r
−
k
)
=
(
m
+
n
r
)
,
r
=
min
{
m
,
n
}
\sum\limits_{k=0}^{r}\dbinom{m}{k}\dbinom{n}{r-k} = \dbinom{m + n }{r} , \ \ \ \ \ \ r= \min \{ m, n \}
k=0∑r(km)(r−kn)=(rm+n), r=min{ m,n}⑩
( 2 ) Combinatorial identity ( Sum of product ) 2 :
∑
k
=
0
r
(
m
k
)
(
n
k
)
=
(
m
+
n
m
)
\sum\limits_{k=0}^{r}\dbinom{m}{k}\dbinom{n}{k} = \dbinom{m + n }{m}
k=0∑r(km)(kn)=(mm+n)⑪
Two 、 Combinatorial identity Method of proof
1 . Known combinatorial identities are substituted into : Known
11
11
11 A combinatorial identity is substituted into
2 . binomial theorem
n
n
n It's a positive integer. , For everything
x
x
x and
y
y
y , There are the following theorems :
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
−
k
(x + y)^n = \sum_{k=0}^n \dbinom{n}{k}x^k y^{n-k}
(x+y)n=k=0∑n(kn)xkyn−k
(
n
k
)
\dbinom{n}{k}
(kn) Express
n
n
n Yuan centralized retrieval
k
k
k Number of combinations of elements , yes Number of sets
C
(
n
,
k
)
C(n,k)
C(n,k) Another way of writing ;
Another common form (
y
=
1
y = 1
y=1 ) :
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
(1 + x)^n = \sum_{k=0}^n \dbinom{n}{k}x^k
(1+x)n=k=0∑n(kn)xk
Basic summation formula (
x
=
y
=
1
x = y =1
x=y=1 ) :
2
n
=
∑
k
=
0
n
(
n
k
)
2^n = \sum_{k=0}^n \dbinom{n}{k}
2n=k=0∑n(kn)
3 . Derivation of power series 、 integral
Derivation of power function : ( Very important )
- Primitive function :
y
=
x
n
y = x^n
y=xn
- Corresponding derivative :
y
′
=
n
x
n
−
1
y' = nx^{n-1}
y′=nxn−1
The derivative of a constant is
0
0
0 ;
Four operations of derivative :
(
u
±
v
)
′
=
u
′
±
v
′
(u \pm v)' = u' \pm v'
(u±v)′=u′±v′
Reference resources :
- derivative - Baidu Encyclopedia
- Combinatorial identity ( Change the next term to sum ) Sum of variable coefficients 1 prove ( binomial theorem + Derivation )
4 . Induction
Mathematical induction describe A proposition related to natural numbers
P
(
n
)
P(n)
P(n) ,
According to different questions , Set up
n
n
n The minimum value , Usually from
0
0
0 Start ,
( 1 ) The proof is divided into the following two steps :
① Inductive basis : First prove that Inductive basis , If it is proved that
P
(
0
)
P(0)
P(0) It's true ;
② Induction steps : according to Types of mathematical induction , Prove in different ways , Here you are First, mathematical induction and Second, mathematical induction Two kinds of induction ;
( 1 ) Mathematical induction :
① First, mathematical induction : from
P
(
n
)
P(n)
P(n) deduction
P
(
n
+
1
)
P(n + 1)
P(n+1)
P
(
0
)
P(0)
P(0) It's true
hypothesis
P
(
n
)
P(n)
P(n) It's true , prove
P
(
n
+
1
)
P(n + 1)
P(n+1) It's true
② Second, mathematical induction : All less than
n
n
n Of
P
(
0
)
,
P
(
1
)
,
⋯
,
P
(
n
−
1
)
P(0) , P(1), \cdots , P(n-1)
P(0),P(1),⋯,P(n−1) It's all true , deduction
P
(
n
)
P(n)
P(n) It's true ;
P
(
0
)
P(0)
P(0) It's true
Assume that all are less than
n
n
n The natural number of
k
k
k , proposition
P
(
k
)
P(k)
P(k) It's all true , namely
P
(
0
)
,
P
(
1
)
,
⋯
,
P
(
n
−
1
)
P(0) , P(1), \cdots , P(n-1)
P(0),P(1),⋯,P(n−1) It's all true , deduction
P
(
n
)
P(n)
P(n) It's true ;
Symbolized as :
P
(
0
)
∧
P
(
1
)
∧
⋯
∧
P
(
n
−
1
)
→
P
(
n
)
P(0) \land P(1) \land \cdots \land P(n-1) \to P(n)
P(0)∧P(1)∧⋯∧P(n−1)→P(n)
Reference resources : 【 Combinatorial mathematics 】 Introduction to combinatorics ( Combination thought 2 : Mathematical induction | Generalization of mathematical induction | Multiple inductive thoughts )
5 . Combinatorial analysis
When using the combination analysis method to prove the combination number , Specify the set first , Specify elements , Specify two counting problems , On both sides of the formula are the counts of the same problem ;
( 1 ) Specify the collection : Specify the set in which the count is generated ;
( 2 ) Specify the counting problem : The following two counting problems are the counting of the same problem ;
- ① problem 1 : The left side of the equal sign represents the counting problem ;
- ② problem 2 : The right side of the equal sign represents the counting problem ;
( 3 ) Equivalent description : It shows that the two counting problems are the same ;
Reference resources :
- 【 Combinatorial mathematics 】 Combinatorial identity ( Combinatorial identity Sum of product 1 | Sum of product 1 prove | Combinatorial identity Sum of product 2 | Sum of product 2 prove ) Two 、 Combinatorial identity ( Sum of product ) 1 prove
The above proof method , According to specific certification requirements , Choose the appropriate proof method ;
3、 ... and 、 Combinatorial number Sum up ∑
\sum
∑ Method
For formulas containing combinatorial numbers Sum up
∑
\sum
∑ Method
1 . Use Pascal formula :
recursion 3 ( Pascal / Yang Hui's trigonometric formula ) :
(
n
k
)
=
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn)=(kn−1)+(k−1n−1)③
( 1 ) Merge item :
(
n
k
)
\dbinom{n}{k}
(kn) Can be reduced to
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn−1)+(k−1n−1) The sum of the ;
( 2 ) This recursion , Used to split items :
Can be
(
n
k
)
\dbinom{n}{k}
(kn) Split into
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn−1)+(k−1n−1) The sum of the ; In actual use , Often encounter some items listed , Yes
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn−1)+(k−1n−1) The number of combinations of forms , Can be merged into one
(
n
k
)
\dbinom{n}{k}
(kn) ;
( 3 ) It can also be used by deformation , Put one of them , Become the difference between two of them ;
take
(
n
−
1
k
)
\dbinom{n - 1}{k}
(kn−1) Split into
(
n
k
)
−
(
n
−
1
k
−
1
)
\dbinom{n}{k} -\dbinom{n - 1}{k - 1}
(kn)−(k−1n−1) The difference between the ;
take take
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k - 1}
(k−1n−1) Split into
(
n
k
)
−
(
n
−
1
k
)
\dbinom{n}{k} -\dbinom{n - 1}{k}
(kn)−(kn−1) The difference between the ;
In a stack of summation combinatorial numbers , Split into the difference between two numbers , Can offset many combinations ;
It is often used for simplification in large sum formulas ;
2 . Sum of series :
3 . Observations and results , Prove by mathematical induction :
Guess the result of a sum , Then use induction to prove ;
4 . Use the known formula to sum :
边栏推荐
- 初试scikit-learn库
- [system safety] 43 PowerShell malicious code detection series (5) automatic extraction of ten thousand words from abstract syntax tree
- Nine ways to define methods in scala- Nine ways to define a method in Scala?
- App mobile terminal test [3] ADB command
- Slam learning notes - build a complete gazebo multi machine simulation slam from scratch (4)
- pycharm错Error updating package list: connect timed out
- 坚持输出需要不断学习
- 请做好3年内随时失业的准备?
- First!! Is lancet hungry? Official documents
- Is it safe to open an account with tongdaxin?
猜你喜欢

TCP拥塞控制详解 | 3. 设计空间
![SDNU_ ACM_ ICPC_ 2022_ Winter_ Practice_ 4th [individual]](/img/3b/7523eca5bbcdbba29d9b7f6e4791a5.jpg)
SDNU_ ACM_ ICPC_ 2022_ Winter_ Practice_ 4th [individual]

Microservice - fuse hystrix

Stm32f103c8t6 firmware library lighting

Three dimensional reconstruction of deep learning

使用AUR下载并安装常用程序

Colab works with Google cloud disk

Redis installation under windows and Linux systems

How can technology managers quickly improve leadership?

《微服务设计》读书笔记(下)
随机推荐
Unityshader - materialcapture material capture effect (Emerald axe)
Microservice - declarative interface call openfeign
App移动端测试【5】文件的写入、读取
[web security] - [SQL injection] - error detection injection
Get the executable path through the process PID (queryfullprocessimagename)
From "zero sum game" to "positive sum game", PAAS triggered the third wave of cloud computing
Hibernate的缓存机制/会话级缓存机制
记一次jar包冲突解决过程
工资3000,靠“视频剪辑”月入40000:会赚钱的人,从不靠拼命!
几种常见IO模型的原理
Create gradle project
用通达信炒股开户安全吗?
深度学习之三维重建
嵌入式开发:避免开源软件的7个理由
Semi supervised learning
Go语言自学系列 | golang中的if else if语句
Microservice - fuse hystrix
Go language self-study series | if else statement in golang
Getting started with Message Oriented Middleware
【Proteus仿真】74HC595+74LS154驱动显示16X16点阵