当前位置:网站首页>Jordan decomposition example of matrix
Jordan decomposition example of matrix
2022-07-02 07:22:00 【Drizzle】
Matrix Jordan Explode instance
Matrix Jordan decompose : Standard + Transformation matrix
〇、 subject
The subject comes from 《 Computer Science Computing 》 The second edition , Editor Zhang Hongwei , Golden sun , Shi Jilin , Dong Bo . book P86 The first 12 topic .
O matrix A = [ 4 − 1 − 1 0 4 0 − 2 0 0 0 2 0 0 0 6 1 ] A= \left[\begin{array}{cccc} 4 & -1 & -1 & 0\\ 4 & 0 & -2 & 0\\ 0 & 0 & 2 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] A=⎣⎢⎢⎡4400−1000−1−2260001⎦⎥⎥⎤ Of Jordan decompose .
One 、 Find its Jordan Standard
Calculation d e t ( λ I − A ) = ∣ λ − 4 1 1 0 − 4 λ 2 0 0 0 λ − 2 0 0 0 − 6 λ − 1 ∣ det(\lambda I - A) = \left|\begin{array}{cccc} \lambda - 4 & 1 & 1 & 0\\ -4 & \lambda & 2 & 0\\ 0 & 0 & \lambda - 2 & 0\\ 0 & 0 & -6 & \lambda - 1\\ \end{array}\right| det(λI−A)=∣∣∣∣∣∣∣∣λ−4−4001λ0012λ−2−6000λ−1∣∣∣∣∣∣∣∣.
The eigenvalue of the solution is λ 1 = 1 \lambda _1 = 1 λ1=1( A multiplicity of algebra ), λ 2 = 2 \lambda _2 = 2 λ2=2( Triple algebraic multiplicity 、 Order ).
Calculation r a n k ( λ 2 I − A ) = 2 rank(\lambda _2 I - A) = 2 rank(λ2I−A)=2, obtain λ 2 \lambda _2 λ2 The geometric multiplicity of is 2, Namely its Jordan The number of blocks is 2, Because the order is 3, You can get two of them Jordan The block must be 1 + 2 1 + 2 1+2 The format of .
Available Jordan The standard type is : J = [ 1 0 0 0 0 2 0 0 0 0 2 1 0 0 0 2 ] J= \left[\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{array}\right] J=⎣⎢⎢⎡1000020000200012⎦⎥⎥⎤.
Two 、 Find its transformation matrix T
By definition A ⋅ ( T 1 , T 2 , T 3 , T 4 ) = ( T 1 , T 2 , T 3 , T 4 ) ⋅ J A \cdot (T_1, T_2, T_3, T_4) = (T_1, T_2, T_3, T_4) \cdot J A⋅(T1,T2,T3,T4)=(T1,T2,T3,T4)⋅J
Two 、 One 、 The first eigenvalue
The following solution , Superscript indicates the block serial number , Subscript indicates the number in the block .
about λ 1 = 1 \lambda _1 = 1 λ1=1, Find its linearly independent eigenvector .
A ⋅ t 1 = λ 1 ⋅ t 1 A \cdot t^1 = \lambda _1 \cdot t^1 A⋅t1=λ1⋅t1, One vector of the solution is t 1 = ( 0 , 0 , 0 , 1 ) T t^1 = (0, 0, 0, 1)^T t1=(0,0,0,1)T, Because it is a geometric multiplicity , You can do it directly Jordan Head of chain .
Two 、 Two 、 The second eigenvalue
Empathy , solve equations ( A − λ 2 I ) ⋅ t 2 = 0 (A - \lambda _2I) \cdot t^2 = 0 (A−λ2I)⋅t2=0
[ 2 − 1 − 1 0 4 − 2 − 2 0 0 0 0 0 0 0 6 1 ] ⋅ t 2 = 0 \left[\begin{array}{cccc} 2 & -1 & -1 & 0\\ 4 & -2 & -2 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] \cdot t^2 = 0 ⎣⎢⎢⎡2400−1−200−1−2060001⎦⎥⎥⎤⋅t2=0
Solution : t 1 3 = t 1 2 = ( 1 , 1 , 1 , 6 ) T , t 2 3 = t 2 2 = ( 0 , 0 , 1 , 6 ) T t^3_1 = t^2_1 = (1, 1, 1, 6)^T,t^3_2 = t^2_2 = (0, 0, 1, 6)^T t13=t12=(1,1,1,6)T,t23=t22=(0,0,1,6)T
Previously known λ 2 = 2 \lambda _2 = 2 λ2=2 It's divided into two parts , The order of a piece ( chain length ) by 1, The order of a piece is 2.
Here we can directly get the order 1 Get the head of the chain , t 2 = ( 1 , 1 , 1 , 6 ) T t^2 = (1, 1, 1, 6)^T t2=(1,1,1,6)T
For chain length 2 Chain , In order to ensure that the second ring can be launched from the head of the chain , That is, the following equation has a solution . ( y by chain The first t 1 3 , z by The first Two Ring t 2 3 ) (y For the head of the chain t^3_1,z For the second ring t^3_2) (y by chain The first t13,z by The first Two Ring t23)
( A − λ 2 I ) ⋅ z = y ( A - \lambda _2 I ) \cdot z = y (A−λ2I)⋅z=y
Make y = k 1 ⋅ t 1 3 + k 2 ⋅ t 2 3 = ( k 1 + k 2 , 2 k 1 − k 2 , k 2 , 6 k 2 ) T y = k_1\cdot t^3_1 + k_2\cdot t^3_2 = (k_1 + k_2, 2k_1 - k_2, k_2, 6k_2)^T y=k1⋅t13+k2⋅t23=(k1+k2,2k1−k2,k2,6k2)T
The condition of its solution is r ( A − λ 2 I ) = r ( ( A − λ 2 I ) ∣ y ) r( A - \lambda _2 I ) = r( \space ( A - \lambda _2 I ) \space | y ) r(A−λ2I)=r( (A−λ2I) ∣y).
Obtainable k 2 = 0 , k 1 = 1 k_2 = 0, k_1 = 1 k2=0,k1=1, namely y = ( 1 , 2 , 0 , 0 ) T y = (1, 2, 0, 0)^T y=(1,2,0,0)T, Substituting into the original equation , You can get z = ( 1 , 1 , 0 , 0 ) T z = (1, 1, 0, 0)^T z=(1,1,0,0)T.
The transformation matrix obtained by synthesis is : T = [ 0 1 1 1 0 1 2 1 0 1 0 0 1 6 0 0 ] T= \left[\begin{array}{cccc} 0 & 1 & 1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 1 & 0 & 0 \\ 1 & 6 & 0 & 0 \end{array}\right] T=⎣⎢⎢⎡0001111612001100⎦⎥⎥⎤.
3、 ... and 、 Scientific checking
Use an online calculator Cloud operator , verification A = T J T − 1 A = TJT^{-1} A=TJT−1.
Correct checking calculation , The following is its T − 1 T^{-1} T−1 value .
T − 1 = [ 0 0 − 6 1 0 0 1 0 − 1 1 0 0 2 − 1 − 1 0 ] T^{-1} =\left[\begin{array}{cccc} 0 & 0 & -6 & 1\\ 0 & 0 & 1 & 0\\ -1 & 1 & 0 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right] T−1=⎣⎢⎢⎡00−12001−1−610−11000⎦⎥⎥⎤
边栏推荐
- view的绘制机制(二)
- ORACLE EBS中消息队列fnd_msg_pub、fnd_message在PL/SQL中的应用
- Yaml file of ingress controller 0.47.0
- pySpark构建临时表报错
- Oracle EBS ADI development steps
- Network security -- intrusion detection of emergency response
- CSRF攻击
- 【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization
- Oracle APEX 21.2 installation et déploiement en une seule touche
- TCP攻击
猜你喜欢

Oracle EBS数据库监控-Zabbix+zabbix-agent2+orabbix

2021-07-05c /cad secondary development create arc (4)

Alpha Beta Pruning in Adversarial Search

Check log4j problems using stain analysis

sparksql数据倾斜那些事儿

Write a thread pool by hand, and take you to learn the implementation principle of ThreadPoolExecutor thread pool

Sparksql data skew

【信息检索导论】第一章 布尔检索

【信息检索导论】第六章 词项权重及向量空间模型

spark sql任务性能优化(基础)
随机推荐
SSM personnel management system
Explanation of suffix of Oracle EBS standard table
Oracle EBS ADI development steps
ORACLE EBS DATAGUARD 搭建
Sqli labs customs clearance summary-page2
离线数仓和bi开发的实践和思考
【模型蒸馏】TinyBERT: Distilling BERT for Natural Language Understanding
Oracle EBS database monitoring -zabbix+zabbix-agent2+orabbix
CSRF攻击
一份Slide两张表格带你快速了解目标检测
Explain in detail the process of realizing Chinese text classification by CNN
Classloader and parental delegation mechanism
优化方法:常用数学符号的含义
CRP实施方法论
Check log4j problems using stain analysis
Oracle 11.2.0.3 handles the problem of continuous growth of sysaux table space without downtime
矩阵的Jordan分解实例
@Transational踩坑
【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization
Implementation of purchase, sales and inventory system with ssm+mysql