当前位置:网站首页>Jordan decomposition example of matrix
Jordan decomposition example of matrix
2022-07-02 07:22:00 【Drizzle】
Matrix Jordan Explode instance
Matrix Jordan decompose : Standard + Transformation matrix
〇、 subject
The subject comes from 《 Computer Science Computing 》 The second edition , Editor Zhang Hongwei , Golden sun , Shi Jilin , Dong Bo . book P86 The first 12 topic .
O matrix A = [ 4 − 1 − 1 0 4 0 − 2 0 0 0 2 0 0 0 6 1 ] A= \left[\begin{array}{cccc} 4 & -1 & -1 & 0\\ 4 & 0 & -2 & 0\\ 0 & 0 & 2 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] A=⎣⎢⎢⎡4400−1000−1−2260001⎦⎥⎥⎤ Of Jordan decompose .
One 、 Find its Jordan Standard
Calculation d e t ( λ I − A ) = ∣ λ − 4 1 1 0 − 4 λ 2 0 0 0 λ − 2 0 0 0 − 6 λ − 1 ∣ det(\lambda I - A) = \left|\begin{array}{cccc} \lambda - 4 & 1 & 1 & 0\\ -4 & \lambda & 2 & 0\\ 0 & 0 & \lambda - 2 & 0\\ 0 & 0 & -6 & \lambda - 1\\ \end{array}\right| det(λI−A)=∣∣∣∣∣∣∣∣λ−4−4001λ0012λ−2−6000λ−1∣∣∣∣∣∣∣∣.
The eigenvalue of the solution is λ 1 = 1 \lambda _1 = 1 λ1=1( A multiplicity of algebra ), λ 2 = 2 \lambda _2 = 2 λ2=2( Triple algebraic multiplicity 、 Order ).
Calculation r a n k ( λ 2 I − A ) = 2 rank(\lambda _2 I - A) = 2 rank(λ2I−A)=2, obtain λ 2 \lambda _2 λ2 The geometric multiplicity of is 2, Namely its Jordan The number of blocks is 2, Because the order is 3, You can get two of them Jordan The block must be 1 + 2 1 + 2 1+2 The format of .
Available Jordan The standard type is : J = [ 1 0 0 0 0 2 0 0 0 0 2 1 0 0 0 2 ] J= \left[\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{array}\right] J=⎣⎢⎢⎡1000020000200012⎦⎥⎥⎤.
Two 、 Find its transformation matrix T
By definition A ⋅ ( T 1 , T 2 , T 3 , T 4 ) = ( T 1 , T 2 , T 3 , T 4 ) ⋅ J A \cdot (T_1, T_2, T_3, T_4) = (T_1, T_2, T_3, T_4) \cdot J A⋅(T1,T2,T3,T4)=(T1,T2,T3,T4)⋅J
Two 、 One 、 The first eigenvalue
The following solution , Superscript indicates the block serial number , Subscript indicates the number in the block .
about λ 1 = 1 \lambda _1 = 1 λ1=1, Find its linearly independent eigenvector .
A ⋅ t 1 = λ 1 ⋅ t 1 A \cdot t^1 = \lambda _1 \cdot t^1 A⋅t1=λ1⋅t1, One vector of the solution is t 1 = ( 0 , 0 , 0 , 1 ) T t^1 = (0, 0, 0, 1)^T t1=(0,0,0,1)T, Because it is a geometric multiplicity , You can do it directly Jordan Head of chain .
Two 、 Two 、 The second eigenvalue
Empathy , solve equations ( A − λ 2 I ) ⋅ t 2 = 0 (A - \lambda _2I) \cdot t^2 = 0 (A−λ2I)⋅t2=0
[ 2 − 1 − 1 0 4 − 2 − 2 0 0 0 0 0 0 0 6 1 ] ⋅ t 2 = 0 \left[\begin{array}{cccc} 2 & -1 & -1 & 0\\ 4 & -2 & -2 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] \cdot t^2 = 0 ⎣⎢⎢⎡2400−1−200−1−2060001⎦⎥⎥⎤⋅t2=0
Solution : t 1 3 = t 1 2 = ( 1 , 1 , 1 , 6 ) T , t 2 3 = t 2 2 = ( 0 , 0 , 1 , 6 ) T t^3_1 = t^2_1 = (1, 1, 1, 6)^T,t^3_2 = t^2_2 = (0, 0, 1, 6)^T t13=t12=(1,1,1,6)T,t23=t22=(0,0,1,6)T
Previously known λ 2 = 2 \lambda _2 = 2 λ2=2 It's divided into two parts , The order of a piece ( chain length ) by 1, The order of a piece is 2.
Here we can directly get the order 1 Get the head of the chain , t 2 = ( 1 , 1 , 1 , 6 ) T t^2 = (1, 1, 1, 6)^T t2=(1,1,1,6)T
For chain length 2 Chain , In order to ensure that the second ring can be launched from the head of the chain , That is, the following equation has a solution . ( y by chain The first t 1 3 , z by The first Two Ring t 2 3 ) (y For the head of the chain t^3_1,z For the second ring t^3_2) (y by chain The first t13,z by The first Two Ring t23)
( A − λ 2 I ) ⋅ z = y ( A - \lambda _2 I ) \cdot z = y (A−λ2I)⋅z=y
Make y = k 1 ⋅ t 1 3 + k 2 ⋅ t 2 3 = ( k 1 + k 2 , 2 k 1 − k 2 , k 2 , 6 k 2 ) T y = k_1\cdot t^3_1 + k_2\cdot t^3_2 = (k_1 + k_2, 2k_1 - k_2, k_2, 6k_2)^T y=k1⋅t13+k2⋅t23=(k1+k2,2k1−k2,k2,6k2)T
The condition of its solution is r ( A − λ 2 I ) = r ( ( A − λ 2 I ) ∣ y ) r( A - \lambda _2 I ) = r( \space ( A - \lambda _2 I ) \space | y ) r(A−λ2I)=r( (A−λ2I) ∣y).
Obtainable k 2 = 0 , k 1 = 1 k_2 = 0, k_1 = 1 k2=0,k1=1, namely y = ( 1 , 2 , 0 , 0 ) T y = (1, 2, 0, 0)^T y=(1,2,0,0)T, Substituting into the original equation , You can get z = ( 1 , 1 , 0 , 0 ) T z = (1, 1, 0, 0)^T z=(1,1,0,0)T.
The transformation matrix obtained by synthesis is : T = [ 0 1 1 1 0 1 2 1 0 1 0 0 1 6 0 0 ] T= \left[\begin{array}{cccc} 0 & 1 & 1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 1 & 0 & 0 \\ 1 & 6 & 0 & 0 \end{array}\right] T=⎣⎢⎢⎡0001111612001100⎦⎥⎥⎤.
3、 ... and 、 Scientific checking
Use an online calculator Cloud operator , verification A = T J T − 1 A = TJT^{-1} A=TJT−1.
Correct checking calculation , The following is its T − 1 T^{-1} T−1 value .
T − 1 = [ 0 0 − 6 1 0 0 1 0 − 1 1 0 0 2 − 1 − 1 0 ] T^{-1} =\left[\begin{array}{cccc} 0 & 0 & -6 & 1\\ 0 & 0 & 1 & 0\\ -1 & 1 & 0 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right] T−1=⎣⎢⎢⎡00−12001−1−610−11000⎦⎥⎥⎤
边栏推荐
- TCP attack
- 【信息检索导论】第一章 布尔检索
- Take you to master the formatter of visual studio code
- ssm垃圾分类管理系统
- SSM student achievement information management system
- Sqli labs customs clearance summary-page2
- Thinkphp5中一个字段对应多个模糊查询
- 读《敏捷整洁之道:回归本源》后感
- view的绘制机制(三)
- A summary of a middle-aged programmer's study of modern Chinese history
猜你喜欢
随机推荐
Oracle RMAN automatic recovery script (migration of production data to test)
Spark的原理解析
【Torch】最简洁logging使用指南
矩阵的Jordan分解实例
IDEA2020中测试PySpark的运行出错
Principle analysis of spark
SSM second hand trading website
Sparksql data skew
Data warehouse model fact table model design
【信息检索导论】第二章 词项词典与倒排记录表
Classloader and parental delegation mechanism
【调参Tricks】WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach
User login function: simple but difficult
使用MAME32K进行联机游戏
JSP intelligent community property management system
ssm超市订单管理系统
oracle EBS标准表的后缀解释说明
Write a thread pool by hand, and take you to learn the implementation principle of ThreadPoolExecutor thread pool
Oracle apex Ajax process + dy verification
SSM garbage classification management system







![[medical] participants to medical ontologies: Content Selection for Clinical Abstract Summarization](/img/24/09ae6baee12edaea806962fc5b9a1e.png)