当前位置:网站首页>Jordan decomposition example of matrix
Jordan decomposition example of matrix
2022-07-02 07:22:00 【Drizzle】
Matrix Jordan Explode instance
Matrix Jordan decompose : Standard + Transformation matrix
〇、 subject
The subject comes from 《 Computer Science Computing 》 The second edition , Editor Zhang Hongwei , Golden sun , Shi Jilin , Dong Bo . book P86 The first 12 topic .
O matrix A = [ 4 − 1 − 1 0 4 0 − 2 0 0 0 2 0 0 0 6 1 ] A= \left[\begin{array}{cccc} 4 & -1 & -1 & 0\\ 4 & 0 & -2 & 0\\ 0 & 0 & 2 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] A=⎣⎢⎢⎡4400−1000−1−2260001⎦⎥⎥⎤ Of Jordan decompose .
One 、 Find its Jordan Standard
Calculation d e t ( λ I − A ) = ∣ λ − 4 1 1 0 − 4 λ 2 0 0 0 λ − 2 0 0 0 − 6 λ − 1 ∣ det(\lambda I - A) = \left|\begin{array}{cccc} \lambda - 4 & 1 & 1 & 0\\ -4 & \lambda & 2 & 0\\ 0 & 0 & \lambda - 2 & 0\\ 0 & 0 & -6 & \lambda - 1\\ \end{array}\right| det(λI−A)=∣∣∣∣∣∣∣∣λ−4−4001λ0012λ−2−6000λ−1∣∣∣∣∣∣∣∣.
The eigenvalue of the solution is λ 1 = 1 \lambda _1 = 1 λ1=1( A multiplicity of algebra ), λ 2 = 2 \lambda _2 = 2 λ2=2( Triple algebraic multiplicity 、 Order ).
Calculation r a n k ( λ 2 I − A ) = 2 rank(\lambda _2 I - A) = 2 rank(λ2I−A)=2, obtain λ 2 \lambda _2 λ2 The geometric multiplicity of is 2, Namely its Jordan The number of blocks is 2, Because the order is 3, You can get two of them Jordan The block must be 1 + 2 1 + 2 1+2 The format of .
Available Jordan The standard type is : J = [ 1 0 0 0 0 2 0 0 0 0 2 1 0 0 0 2 ] J= \left[\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{array}\right] J=⎣⎢⎢⎡1000020000200012⎦⎥⎥⎤.
Two 、 Find its transformation matrix T
By definition A ⋅ ( T 1 , T 2 , T 3 , T 4 ) = ( T 1 , T 2 , T 3 , T 4 ) ⋅ J A \cdot (T_1, T_2, T_3, T_4) = (T_1, T_2, T_3, T_4) \cdot J A⋅(T1,T2,T3,T4)=(T1,T2,T3,T4)⋅J
Two 、 One 、 The first eigenvalue
The following solution , Superscript indicates the block serial number , Subscript indicates the number in the block .
about λ 1 = 1 \lambda _1 = 1 λ1=1, Find its linearly independent eigenvector .
A ⋅ t 1 = λ 1 ⋅ t 1 A \cdot t^1 = \lambda _1 \cdot t^1 A⋅t1=λ1⋅t1, One vector of the solution is t 1 = ( 0 , 0 , 0 , 1 ) T t^1 = (0, 0, 0, 1)^T t1=(0,0,0,1)T, Because it is a geometric multiplicity , You can do it directly Jordan Head of chain .
Two 、 Two 、 The second eigenvalue
Empathy , solve equations ( A − λ 2 I ) ⋅ t 2 = 0 (A - \lambda _2I) \cdot t^2 = 0 (A−λ2I)⋅t2=0
[ 2 − 1 − 1 0 4 − 2 − 2 0 0 0 0 0 0 0 6 1 ] ⋅ t 2 = 0 \left[\begin{array}{cccc} 2 & -1 & -1 & 0\\ 4 & -2 & -2 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] \cdot t^2 = 0 ⎣⎢⎢⎡2400−1−200−1−2060001⎦⎥⎥⎤⋅t2=0
Solution : t 1 3 = t 1 2 = ( 1 , 1 , 1 , 6 ) T , t 2 3 = t 2 2 = ( 0 , 0 , 1 , 6 ) T t^3_1 = t^2_1 = (1, 1, 1, 6)^T,t^3_2 = t^2_2 = (0, 0, 1, 6)^T t13=t12=(1,1,1,6)T,t23=t22=(0,0,1,6)T
Previously known λ 2 = 2 \lambda _2 = 2 λ2=2 It's divided into two parts , The order of a piece ( chain length ) by 1, The order of a piece is 2.
Here we can directly get the order 1 Get the head of the chain , t 2 = ( 1 , 1 , 1 , 6 ) T t^2 = (1, 1, 1, 6)^T t2=(1,1,1,6)T
For chain length 2 Chain , In order to ensure that the second ring can be launched from the head of the chain , That is, the following equation has a solution . ( y by chain The first t 1 3 , z by The first Two Ring t 2 3 ) (y For the head of the chain t^3_1,z For the second ring t^3_2) (y by chain The first t13,z by The first Two Ring t23)
( A − λ 2 I ) ⋅ z = y ( A - \lambda _2 I ) \cdot z = y (A−λ2I)⋅z=y
Make y = k 1 ⋅ t 1 3 + k 2 ⋅ t 2 3 = ( k 1 + k 2 , 2 k 1 − k 2 , k 2 , 6 k 2 ) T y = k_1\cdot t^3_1 + k_2\cdot t^3_2 = (k_1 + k_2, 2k_1 - k_2, k_2, 6k_2)^T y=k1⋅t13+k2⋅t23=(k1+k2,2k1−k2,k2,6k2)T
The condition of its solution is r ( A − λ 2 I ) = r ( ( A − λ 2 I ) ∣ y ) r( A - \lambda _2 I ) = r( \space ( A - \lambda _2 I ) \space | y ) r(A−λ2I)=r( (A−λ2I) ∣y).
Obtainable k 2 = 0 , k 1 = 1 k_2 = 0, k_1 = 1 k2=0,k1=1, namely y = ( 1 , 2 , 0 , 0 ) T y = (1, 2, 0, 0)^T y=(1,2,0,0)T, Substituting into the original equation , You can get z = ( 1 , 1 , 0 , 0 ) T z = (1, 1, 0, 0)^T z=(1,1,0,0)T.
The transformation matrix obtained by synthesis is : T = [ 0 1 1 1 0 1 2 1 0 1 0 0 1 6 0 0 ] T= \left[\begin{array}{cccc} 0 & 1 & 1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 1 & 0 & 0 \\ 1 & 6 & 0 & 0 \end{array}\right] T=⎣⎢⎢⎡0001111612001100⎦⎥⎥⎤.
3、 ... and 、 Scientific checking
Use an online calculator Cloud operator , verification A = T J T − 1 A = TJT^{-1} A=TJT−1.
Correct checking calculation , The following is its T − 1 T^{-1} T−1 value .
T − 1 = [ 0 0 − 6 1 0 0 1 0 − 1 1 0 0 2 − 1 − 1 0 ] T^{-1} =\left[\begin{array}{cccc} 0 & 0 & -6 & 1\\ 0 & 0 & 1 & 0\\ -1 & 1 & 0 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right] T−1=⎣⎢⎢⎡00−12001−1−610−11000⎦⎥⎥⎤
边栏推荐
- Agile development of software development pattern (scrum)
- How to call WebService in PHP development environment?
- One field in thinkphp5 corresponds to multiple fuzzy queries
- MySQL has no collation factor of order by
- Network security -- intrusion detection of emergency response
- CRP implementation methodology
- Sqli-labs customs clearance (less1)
- RMAN增量恢复示例(1)-不带未备份的归档日志
- Take you to master the formatter of visual studio code
- ORACLE EBS中消息队列fnd_msg_pub、fnd_message在PL/SQL中的应用
猜你喜欢

Oracle EBS ADI development steps

【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization

【信息检索导论】第二章 词项词典与倒排记录表

SSM supermarket order management system

MySQL has no collation factor of order by

【调参Tricks】WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach

TCP attack

Ingress Controller 0.47.0的Yaml文件

ORACLE EBS ADI 开发步骤

【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization
随机推荐
使用Matlab实现:幂法、反幂法(原点位移)
CSRF attack
CRP implementation methodology
【模型蒸馏】TinyBERT: Distilling BERT for Natural Language Understanding
MySQL无order by的排序规则因素
Sqli-labs customs clearance (less1)
【信息检索导论】第一章 布尔检索
JSP intelligent community property management system
华为机试题-20190417
view的绘制机制(二)
Principle analysis of spark
Sqli labs customs clearance summary-page1
Ding Dong, here comes the redis om object mapping framework
优化方法:常用数学符号的含义
Oracle EBS interface development - quick generation of JSON format data
pySpark构建临时表报错
图解Kubernetes中的etcd的访问
oracle EBS标准表的后缀解释说明
【信息检索导论】第二章 词项词典与倒排记录表
【信息检索导论】第七章搜索系统中的评分计算