当前位置:网站首页>Jordan decomposition example of matrix
Jordan decomposition example of matrix
2022-07-02 07:22:00 【Drizzle】
Matrix Jordan Explode instance
Matrix Jordan decompose : Standard + Transformation matrix
〇、 subject
The subject comes from 《 Computer Science Computing 》 The second edition , Editor Zhang Hongwei , Golden sun , Shi Jilin , Dong Bo . book P86 The first 12 topic .
O matrix A = [ 4 − 1 − 1 0 4 0 − 2 0 0 0 2 0 0 0 6 1 ] A= \left[\begin{array}{cccc} 4 & -1 & -1 & 0\\ 4 & 0 & -2 & 0\\ 0 & 0 & 2 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] A=⎣⎢⎢⎡4400−1000−1−2260001⎦⎥⎥⎤ Of Jordan decompose .
One 、 Find its Jordan Standard
Calculation d e t ( λ I − A ) = ∣ λ − 4 1 1 0 − 4 λ 2 0 0 0 λ − 2 0 0 0 − 6 λ − 1 ∣ det(\lambda I - A) = \left|\begin{array}{cccc} \lambda - 4 & 1 & 1 & 0\\ -4 & \lambda & 2 & 0\\ 0 & 0 & \lambda - 2 & 0\\ 0 & 0 & -6 & \lambda - 1\\ \end{array}\right| det(λI−A)=∣∣∣∣∣∣∣∣λ−4−4001λ0012λ−2−6000λ−1∣∣∣∣∣∣∣∣.
The eigenvalue of the solution is λ 1 = 1 \lambda _1 = 1 λ1=1( A multiplicity of algebra ), λ 2 = 2 \lambda _2 = 2 λ2=2( Triple algebraic multiplicity 、 Order ).
Calculation r a n k ( λ 2 I − A ) = 2 rank(\lambda _2 I - A) = 2 rank(λ2I−A)=2, obtain λ 2 \lambda _2 λ2 The geometric multiplicity of is 2, Namely its Jordan The number of blocks is 2, Because the order is 3, You can get two of them Jordan The block must be 1 + 2 1 + 2 1+2 The format of .
Available Jordan The standard type is : J = [ 1 0 0 0 0 2 0 0 0 0 2 1 0 0 0 2 ] J= \left[\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{array}\right] J=⎣⎢⎢⎡1000020000200012⎦⎥⎥⎤.
Two 、 Find its transformation matrix T
By definition A ⋅ ( T 1 , T 2 , T 3 , T 4 ) = ( T 1 , T 2 , T 3 , T 4 ) ⋅ J A \cdot (T_1, T_2, T_3, T_4) = (T_1, T_2, T_3, T_4) \cdot J A⋅(T1,T2,T3,T4)=(T1,T2,T3,T4)⋅J
Two 、 One 、 The first eigenvalue
The following solution , Superscript indicates the block serial number , Subscript indicates the number in the block .
about λ 1 = 1 \lambda _1 = 1 λ1=1, Find its linearly independent eigenvector .
A ⋅ t 1 = λ 1 ⋅ t 1 A \cdot t^1 = \lambda _1 \cdot t^1 A⋅t1=λ1⋅t1, One vector of the solution is t 1 = ( 0 , 0 , 0 , 1 ) T t^1 = (0, 0, 0, 1)^T t1=(0,0,0,1)T, Because it is a geometric multiplicity , You can do it directly Jordan Head of chain .
Two 、 Two 、 The second eigenvalue
Empathy , solve equations ( A − λ 2 I ) ⋅ t 2 = 0 (A - \lambda _2I) \cdot t^2 = 0 (A−λ2I)⋅t2=0
[ 2 − 1 − 1 0 4 − 2 − 2 0 0 0 0 0 0 0 6 1 ] ⋅ t 2 = 0 \left[\begin{array}{cccc} 2 & -1 & -1 & 0\\ 4 & -2 & -2 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] \cdot t^2 = 0 ⎣⎢⎢⎡2400−1−200−1−2060001⎦⎥⎥⎤⋅t2=0
Solution : t 1 3 = t 1 2 = ( 1 , 1 , 1 , 6 ) T , t 2 3 = t 2 2 = ( 0 , 0 , 1 , 6 ) T t^3_1 = t^2_1 = (1, 1, 1, 6)^T,t^3_2 = t^2_2 = (0, 0, 1, 6)^T t13=t12=(1,1,1,6)T,t23=t22=(0,0,1,6)T
Previously known λ 2 = 2 \lambda _2 = 2 λ2=2 It's divided into two parts , The order of a piece ( chain length ) by 1, The order of a piece is 2.
Here we can directly get the order 1 Get the head of the chain , t 2 = ( 1 , 1 , 1 , 6 ) T t^2 = (1, 1, 1, 6)^T t2=(1,1,1,6)T
For chain length 2 Chain , In order to ensure that the second ring can be launched from the head of the chain , That is, the following equation has a solution . ( y by chain The first t 1 3 , z by The first Two Ring t 2 3 ) (y For the head of the chain t^3_1,z For the second ring t^3_2) (y by chain The first t13,z by The first Two Ring t23)
( A − λ 2 I ) ⋅ z = y ( A - \lambda _2 I ) \cdot z = y (A−λ2I)⋅z=y
Make y = k 1 ⋅ t 1 3 + k 2 ⋅ t 2 3 = ( k 1 + k 2 , 2 k 1 − k 2 , k 2 , 6 k 2 ) T y = k_1\cdot t^3_1 + k_2\cdot t^3_2 = (k_1 + k_2, 2k_1 - k_2, k_2, 6k_2)^T y=k1⋅t13+k2⋅t23=(k1+k2,2k1−k2,k2,6k2)T
The condition of its solution is r ( A − λ 2 I ) = r ( ( A − λ 2 I ) ∣ y ) r( A - \lambda _2 I ) = r( \space ( A - \lambda _2 I ) \space | y ) r(A−λ2I)=r( (A−λ2I) ∣y).
Obtainable k 2 = 0 , k 1 = 1 k_2 = 0, k_1 = 1 k2=0,k1=1, namely y = ( 1 , 2 , 0 , 0 ) T y = (1, 2, 0, 0)^T y=(1,2,0,0)T, Substituting into the original equation , You can get z = ( 1 , 1 , 0 , 0 ) T z = (1, 1, 0, 0)^T z=(1,1,0,0)T.
The transformation matrix obtained by synthesis is : T = [ 0 1 1 1 0 1 2 1 0 1 0 0 1 6 0 0 ] T= \left[\begin{array}{cccc} 0 & 1 & 1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 1 & 0 & 0 \\ 1 & 6 & 0 & 0 \end{array}\right] T=⎣⎢⎢⎡0001111612001100⎦⎥⎥⎤.
3、 ... and 、 Scientific checking
Use an online calculator Cloud operator , verification A = T J T − 1 A = TJT^{-1} A=TJT−1.
Correct checking calculation , The following is its T − 1 T^{-1} T−1 value .
T − 1 = [ 0 0 − 6 1 0 0 1 0 − 1 1 0 0 2 − 1 − 1 0 ] T^{-1} =\left[\begin{array}{cccc} 0 & 0 & -6 & 1\\ 0 & 0 & 1 & 0\\ -1 & 1 & 0 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right] T−1=⎣⎢⎢⎡00−12001−1−610−11000⎦⎥⎥⎤
边栏推荐
- 使用Matlab实现:幂法、反幂法(原点位移)
- PHP uses the method of collecting to insert a value into the specified position in the array
- pySpark构建临时表报错
- Implementation of purchase, sales and inventory system with ssm+mysql
- 图解Kubernetes中的etcd的访问
- Sqli labs customs clearance summary-page2
- Oracle EBS数据库监控-Zabbix+zabbix-agent2+orabbix
- ORACLE 11G利用 ORDS+pljson来实现json_table 效果
- SSM二手交易网站
- Sqli Labs clearance summary - page 2
猜你喜欢
TCP攻击
图解Kubernetes中的etcd的访问
如何高效开发一款微信小程序
使用 Compose 实现可见 ScrollBar
Sqli Labs clearance summary - page 2
Ceaspectuss shipping company shipping artificial intelligence products, anytime, anywhere container inspection and reporting to achieve cloud yard, shipping company intelligent digital container contr
Build FRP for intranet penetration
外币记账及重估总账余额表变化(下)
SSM garbage classification management system
ssm人事管理系统
随机推荐
Oracle 11g sysaux table space full processing and the difference between move and shrink
[Bert, gpt+kg research] collection of papers on the integration of Pretrain model with knowledge
Spark SQL task performance optimization (basic)
ARP攻击
How to call WebService in PHP development environment?
How to efficiently develop a wechat applet
One field in thinkphp5 corresponds to multiple fuzzy queries
架构设计三原则
Get the uppercase initials of Chinese Pinyin in PHP
Oracle EBS ADI development steps
【信息检索导论】第二章 词项词典与倒排记录表
SSM实验室设备管理
优化方法:常用数学符号的含义
Three principles of architecture design
[torch] the most concise logging User Guide
图解Kubernetes中的etcd的访问
Oracle segment advisor, how to deal with row link row migration, reduce high water level
Oracle EBS数据库监控-Zabbix+zabbix-agent2+orabbix
MySQL composite index with or without ID
Oracle 11g uses ords+pljson to implement JSON_ Table effect