当前位置:网站首页>[mathematical logic] propositional logic (propositional logic reasoning | formal structure of reasoning | inference law | additional law | simplification law | hypothetical reasoning | refusal | disju
[mathematical logic] propositional logic (propositional logic reasoning | formal structure of reasoning | inference law | additional law | simplification law | hypothetical reasoning | refusal | disju
2022-07-03 03:29:00 【Programmer community】
List of articles
- One 、 The formal structure of reasoning
- Two 、 The law of reasoning
- 1、 Additional law
- 2、 The law of simplification
- 3、 Hypothetical reasoning
- 4、 Reject
- 5、 Disjunctive syllogism
- 6、 Hypothetical syllogism
- 7、 Equivalent syllogism
- 8、 constructive dilemma
One 、 The formal structure of reasoning
The formal structure of reasoning
Premise :
A
1
,
A
2
,
⋯
,
A
k
A_1 , A_2 , \cdots , A_k
A1,A2,⋯,Ak
Conclusion :
B
B
B
The formal structure of reasoning is :
(
A
1
∧
A
2
∧
⋯
∧
A
k
)
→
B
(A_1 \land A_2 \land \cdots \land A_k) \to B
(A1∧A2∧⋯∧Ak)→B
Two 、 The law of reasoning
The law of reasoning :
A
,
B
A,B
A,B There are two propositions , If
A
→
B
A \to B
A→B It's Yongzhen style , that
A
⇒
B
A \Rightarrow B
A⇒B ;
1、 Additional law
Additional law :
A
⇒
(
A
∨
B
)
A \Rightarrow (A \lor B)
A⇒(A∨B)
according to The law of reasoning ,
A
→
(
A
∨
B
)
A \to (A \lor B)
A→(A∨B) Implicative form yes Yongzhen style ;
Premise :
A
A
A
Conclusion :
A
∨
B
A \lor B
A∨B
A
A
A Yes. , that
A
∨
B
A \lor B
A∨B That's right. , The latter is an addition to the former
B
B
B ;
2、 The law of simplification
The law of simplification :
(
A
∧
B
)
⇒
A
( A \land B ) \Rightarrow A
(A∧B)⇒A ,
(
A
∧
B
)
⇒
B
( A \land B ) \Rightarrow B
(A∧B)⇒B
according to The law of reasoning ,
(
A
∧
B
)
→
A
( A \land B ) \to A
(A∧B)→A ,
(
A
∧
B
)
→
B
( A \land B ) \to B
(A∧B)→B Implicative form yes Yongzhen style ;
Premise :
A
∧
B
A \land B
A∧B
Conclusion :
A
A
A or
B
B
B
A
∧
B
A \land B
A∧B Yes. , that
A
A
A or
B
B
B That's right. , The latter is simplified on the basis of the former ;
3、 Hypothetical reasoning
Hypothetical reasoning :
(
A
→
B
)
∧
A
⇒
B
( A \to B ) \land A \Rightarrow B
(A→B)∧A⇒B
according to The law of reasoning ,
(
A
→
B
)
∧
A
→
B
( A \to B ) \land A \to B
(A→B)∧A→B Implicative form yes Yongzhen style ;
Premise :
A
→
B
A \to B
A→B ,
A
A
A
Conclusion :
B
B
B
This is a typical small three paragraph theory ;
4、 Reject
Reject :
(
A
→
B
)
∧
¬
B
⇒
¬
A
( A \to B ) \land \lnot B \Rightarrow \lnot A
(A→B)∧¬B⇒¬A
according to The law of reasoning ,
(
A
→
B
)
∧
¬
B
→
¬
A
( A \to B ) \land \lnot B \to \lnot A
(A→B)∧¬B→¬A Implicative form yes Yongzhen style ;
Premise :
A
→
B
A \to B
A→B ,
¬
B
\lnot B
¬B
Conclusion :
¬
A
\lnot A
¬A
It can be understood as a counter evidence ;
5、 Disjunctive syllogism
Disjunctive syllogism :
(
A
∨
B
)
∧
¬
A
⇒
B
( A \lor B ) \land \lnot A \Rightarrow B
(A∨B)∧¬A⇒B ,
(
A
∨
B
)
∧
¬
B
⇒
A
( A \lor B ) \land \lnot B \Rightarrow A
(A∨B)∧¬B⇒A
according to The law of reasoning ,
(
A
∨
B
)
∧
¬
A
→
B
( A \lor B ) \land \lnot A \to B
(A∨B)∧¬A→B ,
(
A
∨
B
)
∧
¬
B
→
A
( A \lor B ) \land \lnot B \to A
(A∨B)∧¬B→A Implicative form yes Yongzhen style ;
Premise :
A
∨
B
A \lor B
A∨B ,
¬
A
\lnot A
¬A
Conclusion :
B
B
B
(
A
∨
B
)
(A \lor B)
(A∨B) That's right. , among
A
A
A It's wrong. , that
B
B
B It must be right ;
(
A
∨
B
)
(A \lor B)
(A∨B) That's right. , among
B
B
B It's wrong. , that
A
A
A It must be right ;
Police often use reasoning methods to solve cases , Exclude suspects one by one ;
6、 Hypothetical syllogism
Hypothetical syllogism :
(
A
→
B
)
∧
(
B
→
C
)
⇒
(
A
→
C
)
( A \to B ) \land ( B \to C ) \Rightarrow ( A \to C )
(A→B)∧(B→C)⇒(A→C)
according to The law of reasoning ,
(
A
→
B
)
∧
(
B
→
C
)
→
(
A
→
C
)
( A \to B ) \land ( B \to C ) \to ( A \to C )
(A→B)∧(B→C)→(A→C) Implicative form yes Yongzhen style ;
Premise :
A
→
B
A \to B
A→B ,
B
→
C
B \to C
B→C
Conclusion :
A
→
C
A \to C
A→C
7、 Equivalent syllogism
Equivalent syllogism :
(
A
B
)
∧
(
B
C
)
⇒
(
A
C
)
( A \leftrightarrow B ) \land ( B \leftrightarrow C ) \Rightarrow ( A \leftrightarrow C )
(AB)∧(BC)⇒(AC)
according to The law of reasoning ,
(
(
A
B
)
∧
(
B
C
)
)
→
(
A
C
)
( ( A \leftrightarrow B ) \land ( B \leftrightarrow C ) ) \to ( A \leftrightarrow C )
((AB)∧(BC))→(AC) Implicative form yes Yongzhen style ;
Premise :
A
B
A \leftrightarrow B
AB ,
B
C
B \leftrightarrow C
BC
Conclusion :
A
C
A \leftrightarrow C
AC
8、 constructive dilemma
Equivalent syllogism :
(
A
→
B
)
∧
(
C
→
D
)
∧
(
A
∨
C
)
⇒
(
B
∨
D
)
( A \to B ) \land ( C \to D ) \land ( A \lor C ) \Rightarrow ( B \lor D )
(A→B)∧(C→D)∧(A∨C)⇒(B∨D)
according to The law of reasoning ,
(
(
A
→
B
)
∧
(
C
→
D
)
∧
(
A
∨
C
)
)
→
(
(
B
∨
D
)
)
( ( A \to B ) \land ( C \to D ) \land ( A \lor C ) ) \to ( ( B \lor D ) )
((A→B)∧(C→D)∧(A∨C))→((B∨D)) Implicative form yes Yongzhen style ;
Premise :
A
→
B
A \to B
A→B ,
C
→
D
C \to D
C→D ,
A
∨
C
A \lor C
A∨C
Conclusion :
B
∨
D
B \lor D
B∨D
Way of understanding :
A
A
A Is to develop the economy ,
B
B
B It's pollution
C
C
C Is not to develop the economy ,
D
D
D It's poverty
A
∨
B
A \lor B
A∨B Or develop the economy , Or do not develop the economy
The result is
B
∨
D
B \lor D
B∨D , Or produce pollution , Or endure poverty
边栏推荐
- The file marked by labelme is converted to yolov5 format
- redis高级应用【密码防护、数据持久化、主从同步、哨兵模式、事务】【暂未完成(半成品)】
- [combinatorics] Application of exponential generating function (multiple set arrangement problem | different balls in different boxes | derivation of exponential generating function of odd / even sequ
- Pytoch lightweight visualization tool wandb (local)
- Téléchargement et installation du client Filezilla
- MySQL MAC download and installation tutorial
- Bid farewell to artificial mental retardation: Mengzi open source project team received RMB 100 million financing to help NLP develop
- 文件重命名
- Don't use the new Dede collection without the updated Dede plug-in
- MongoDB主配置文件
猜你喜欢

Pat class B "1104 forever" DFS optimization idea

node,npm以及yarn下载安装

【PyG】理解MessagePassing过程,GCN demo详解

Pytoch lightweight visualization tool wandb (local)

Spark on yarn resource optimization ideas notes

Téléchargement et installation du client Filezilla

Hi3536C V100R001C02SPC040 交叉编译器安装

Pytorch multi card distributed training distributeddataparallel usage

别再用 System.currentTimeMillis() 统计耗时了,太 Low,StopWatch 好用到爆!

Spark on yarn资源优化思路笔记
随机推荐
MongoDB安装 & 部署
900w+ data, from 17s to 300ms, how to operate
ffmpeg下载安装教程及介绍
npm : 无法将“npm”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。
Basic information of Promethus (I)
com.fasterxml.jackson.databind.exc.InvalidFormatException问题
ffmpeg之 一张/多张图片合成视频
使用InputFilter限制EditText时踩坑及解决方案
Solve high and send system Currenttimemillis Caton
模型转换onnx2engine
MongoDB复制集【主从复制】
Limit of one question per day
[combinatorics] number of solutions of indefinite equations (number of combinations of multiple sets R | number of non negative integer solutions of indefinite equations | number of integer solutions
docker安装及启动mysql服务
Mongodb replication set [master-slave replication]
Learning notes of C programming [compiled by Mr. Tan Haoqiang] (Chapter III sequence programming) 04 C sentence
Spark on yarn resource optimization ideas notes
Avec trois. JS fait une scène 3D simple
Spark on yarn资源优化思路笔记
idea 加载不了应用市场解决办法(亲测)