当前位置:网站首页>[mathematical logic] propositional logic (propositional logic reasoning | formal structure of reasoning | inference law | additional law | simplification law | hypothetical reasoning | refusal | disju
[mathematical logic] propositional logic (propositional logic reasoning | formal structure of reasoning | inference law | additional law | simplification law | hypothetical reasoning | refusal | disju
2022-07-03 03:29:00 【Programmer community】
List of articles
- One 、 The formal structure of reasoning
- Two 、 The law of reasoning
- 1、 Additional law
- 2、 The law of simplification
- 3、 Hypothetical reasoning
- 4、 Reject
- 5、 Disjunctive syllogism
- 6、 Hypothetical syllogism
- 7、 Equivalent syllogism
- 8、 constructive dilemma
One 、 The formal structure of reasoning
The formal structure of reasoning
Premise :
A
1
,
A
2
,
⋯
,
A
k
A_1 , A_2 , \cdots , A_k
A1,A2,⋯,Ak
Conclusion :
B
B
B
The formal structure of reasoning is :
(
A
1
∧
A
2
∧
⋯
∧
A
k
)
→
B
(A_1 \land A_2 \land \cdots \land A_k) \to B
(A1∧A2∧⋯∧Ak)→B
Two 、 The law of reasoning
The law of reasoning :
A
,
B
A,B
A,B There are two propositions , If
A
→
B
A \to B
A→B It's Yongzhen style , that
A
⇒
B
A \Rightarrow B
A⇒B ;
1、 Additional law
Additional law :
A
⇒
(
A
∨
B
)
A \Rightarrow (A \lor B)
A⇒(A∨B)
according to The law of reasoning ,
A
→
(
A
∨
B
)
A \to (A \lor B)
A→(A∨B) Implicative form yes Yongzhen style ;
Premise :
A
A
A
Conclusion :
A
∨
B
A \lor B
A∨B
A
A
A Yes. , that
A
∨
B
A \lor B
A∨B That's right. , The latter is an addition to the former
B
B
B ;
2、 The law of simplification
The law of simplification :
(
A
∧
B
)
⇒
A
( A \land B ) \Rightarrow A
(A∧B)⇒A ,
(
A
∧
B
)
⇒
B
( A \land B ) \Rightarrow B
(A∧B)⇒B
according to The law of reasoning ,
(
A
∧
B
)
→
A
( A \land B ) \to A
(A∧B)→A ,
(
A
∧
B
)
→
B
( A \land B ) \to B
(A∧B)→B Implicative form yes Yongzhen style ;
Premise :
A
∧
B
A \land B
A∧B
Conclusion :
A
A
A or
B
B
B
A
∧
B
A \land B
A∧B Yes. , that
A
A
A or
B
B
B That's right. , The latter is simplified on the basis of the former ;
3、 Hypothetical reasoning
Hypothetical reasoning :
(
A
→
B
)
∧
A
⇒
B
( A \to B ) \land A \Rightarrow B
(A→B)∧A⇒B
according to The law of reasoning ,
(
A
→
B
)
∧
A
→
B
( A \to B ) \land A \to B
(A→B)∧A→B Implicative form yes Yongzhen style ;
Premise :
A
→
B
A \to B
A→B ,
A
A
A
Conclusion :
B
B
B
This is a typical small three paragraph theory ;
4、 Reject
Reject :
(
A
→
B
)
∧
¬
B
⇒
¬
A
( A \to B ) \land \lnot B \Rightarrow \lnot A
(A→B)∧¬B⇒¬A
according to The law of reasoning ,
(
A
→
B
)
∧
¬
B
→
¬
A
( A \to B ) \land \lnot B \to \lnot A
(A→B)∧¬B→¬A Implicative form yes Yongzhen style ;
Premise :
A
→
B
A \to B
A→B ,
¬
B
\lnot B
¬B
Conclusion :
¬
A
\lnot A
¬A
It can be understood as a counter evidence ;
5、 Disjunctive syllogism
Disjunctive syllogism :
(
A
∨
B
)
∧
¬
A
⇒
B
( A \lor B ) \land \lnot A \Rightarrow B
(A∨B)∧¬A⇒B ,
(
A
∨
B
)
∧
¬
B
⇒
A
( A \lor B ) \land \lnot B \Rightarrow A
(A∨B)∧¬B⇒A
according to The law of reasoning ,
(
A
∨
B
)
∧
¬
A
→
B
( A \lor B ) \land \lnot A \to B
(A∨B)∧¬A→B ,
(
A
∨
B
)
∧
¬
B
→
A
( A \lor B ) \land \lnot B \to A
(A∨B)∧¬B→A Implicative form yes Yongzhen style ;
Premise :
A
∨
B
A \lor B
A∨B ,
¬
A
\lnot A
¬A
Conclusion :
B
B
B
(
A
∨
B
)
(A \lor B)
(A∨B) That's right. , among
A
A
A It's wrong. , that
B
B
B It must be right ;
(
A
∨
B
)
(A \lor B)
(A∨B) That's right. , among
B
B
B It's wrong. , that
A
A
A It must be right ;
Police often use reasoning methods to solve cases , Exclude suspects one by one ;
6、 Hypothetical syllogism
Hypothetical syllogism :
(
A
→
B
)
∧
(
B
→
C
)
⇒
(
A
→
C
)
( A \to B ) \land ( B \to C ) \Rightarrow ( A \to C )
(A→B)∧(B→C)⇒(A→C)
according to The law of reasoning ,
(
A
→
B
)
∧
(
B
→
C
)
→
(
A
→
C
)
( A \to B ) \land ( B \to C ) \to ( A \to C )
(A→B)∧(B→C)→(A→C) Implicative form yes Yongzhen style ;
Premise :
A
→
B
A \to B
A→B ,
B
→
C
B \to C
B→C
Conclusion :
A
→
C
A \to C
A→C
7、 Equivalent syllogism
Equivalent syllogism :
(
A
B
)
∧
(
B
C
)
⇒
(
A
C
)
( A \leftrightarrow B ) \land ( B \leftrightarrow C ) \Rightarrow ( A \leftrightarrow C )
(AB)∧(BC)⇒(AC)
according to The law of reasoning ,
(
(
A
B
)
∧
(
B
C
)
)
→
(
A
C
)
( ( A \leftrightarrow B ) \land ( B \leftrightarrow C ) ) \to ( A \leftrightarrow C )
((AB)∧(BC))→(AC) Implicative form yes Yongzhen style ;
Premise :
A
B
A \leftrightarrow B
AB ,
B
C
B \leftrightarrow C
BC
Conclusion :
A
C
A \leftrightarrow C
AC
8、 constructive dilemma
Equivalent syllogism :
(
A
→
B
)
∧
(
C
→
D
)
∧
(
A
∨
C
)
⇒
(
B
∨
D
)
( A \to B ) \land ( C \to D ) \land ( A \lor C ) \Rightarrow ( B \lor D )
(A→B)∧(C→D)∧(A∨C)⇒(B∨D)
according to The law of reasoning ,
(
(
A
→
B
)
∧
(
C
→
D
)
∧
(
A
∨
C
)
)
→
(
(
B
∨
D
)
)
( ( A \to B ) \land ( C \to D ) \land ( A \lor C ) ) \to ( ( B \lor D ) )
((A→B)∧(C→D)∧(A∨C))→((B∨D)) Implicative form yes Yongzhen style ;
Premise :
A
→
B
A \to B
A→B ,
C
→
D
C \to D
C→D ,
A
∨
C
A \lor C
A∨C
Conclusion :
B
∨
D
B \lor D
B∨D
Way of understanding :
A
A
A Is to develop the economy ,
B
B
B It's pollution
C
C
C Is not to develop the economy ,
D
D
D It's poverty
A
∨
B
A \lor B
A∨B Or develop the economy , Or do not develop the economy
The result is
B
∨
D
B \lor D
B∨D , Or produce pollution , Or endure poverty
边栏推荐
- Mongodb master profile
- el-tree搜索方法使用
- Stepping on pits and solutions when using inputfilter to limit EditText
- Summary of matrix knowledge points in Chapter 2 of Linear Algebra (Jeff's self perception)
- labelme标记的文件转换为yolov5格式
- Elsevier latex submitted the article pdftex def Error: File `thumbnails/cas-email. jpeg‘ not found: using draf
- 解决高並發下System.currentTimeMillis卡頓
- com.fasterxml.jackson.databind.exc.InvalidFormatException问题
- 使用InputFilter限制EditText时踩坑及解决方案
- com. fasterxml. jackson. databind. Exc.invalidformatexception problem
猜你喜欢

900W+ 数据,从 17s 到 300ms,如何操作

Summary of determinant knowledge points in Chapter 1 of Linear Algebra (Jeff's self perception)
![C programming learning notes [edited by Mr. Tan Haoqiang] (Chapter III sequence programming) 03 operators and expressions](/img/4a/1df03d9f3315debb4c335260ed39f2.jpg)
C programming learning notes [edited by Mr. Tan Haoqiang] (Chapter III sequence programming) 03 operators and expressions

Applet get user avatar and nickname

Elsevier latex 提交文章 pdftex.def Error: File `thumbnails/cas-email.jpeg‘ not found: using draf

Bid farewell to artificial mental retardation: Mengzi open source project team received RMB 100 million financing to help NLP develop

Captura下载安装及在Captura配置FFmpeg

Idea set method call ignore case

On the adjacency matrix and adjacency table of graph storage

Tidal characteristics of the Bohai Sea and the Yellow Sea
随机推荐
[combinatorics] Application of exponential generating function (multiple set arrangement problem | different balls in different boxes | derivation of exponential generating function of odd / even sequ
com.fasterxml.jackson.databind.exc.InvalidFormatException问题
Convert binary stream to byte array
QQ小程序开发之 一些前期准备:预约开发账号、下载安装开发者工具、创建qq小程序
Application of derivative in daily question
二进制流转换成字节数组
Elsevier latex 提交文章 pdftex.def Error: File `thumbnails/cas-email.jpeg‘ not found: using draf
Use three JS make a simple 3D scene
[set theory] partial order relation (partial order relation definition | partial order set definition | greater than or equal to relation | less than or equal to relation | integer division relation |
The difference between static web pages and dynamic web pages & the difference between Web1.0 and Web2.0 & the difference between get and post
MySQL MAC download and installation tutorial
User value is the last word in the competition of mobile phone market
C programming learning notes [edited by Mr. Tan Haoqiang] (Chapter III sequence programming) 03 operators and expressions
VS 2019 配置tensorRT生成engine
VS 2019安装及配置opencv
递归使用和多维数组对象变一维数组对象
File rename
Idea format code idea set shortcut key format code
ffmpeg之 一张/多张图片合成视频
基于QT的tensorRT加速的yolov5