当前位置:网站首页>Deep Learning Basics Overfitting, Underfitting Problems, and Regularization
Deep Learning Basics Overfitting, Underfitting Problems, and Regularization
2022-08-02 05:29:00 【hello689】
引自《统计学习方法》李航, 当假设空间含有不同复杂度(例如,不同的参数个数)的模型时,就要面临模型选择的问题.We want to choose to study a suitable or model.如果在假设空间中存在’真’模型,Then the selected model should be close to real. 具体地,The selected model to have the same number with the true model parameters,The selected model parameter vector close to the true model parameter vector.
1. 过拟合
过拟合现象:Model of the known data to predict very well,For unknown data to predict the phenomenon of poor(训练集效果好,In the test set and validation set effect is poor).
背后的原理:If the constantly pursue to the predictive ability of training data,The selected model complexity tend to be higher than the complexity of the true model.(李航-Statistical learning methods of)
From the model complexity perspective:模型过于复杂,The noise data also study in,Led to the decrease of the model generalization performance.
From the perspective of the data set is:数据集规模Relative to the model complexity too小,The features of the model of excessive mining data set.
解决过拟合常用方法:
- 增加数据集;数据增强,扩充数据,Synthesis of new data generated against network.
- 正则化方法:BN和dropout
- 添加BN层,BnTo a certain extent, can improve the model generalization.
- dropout,Some random hidden neurons,So in the process of training, it won't update every time.
- 降低模型复杂度,Can reduce network layer,To switch to participate less number of model;
- Reduce training round number,(也叫early stopping,The iterative convergence model training data sets before stop iterative,来防止过拟合.)做法:每个epoch,记录最好的结果.When the tenepoch,Fail to improve on the accuracy of test set,那就说明,The model can be truncated.
- 集成学习方法:把多个模型集成在一起,降低单一模型的过拟合风险.
- 交叉检验:这个有点复杂,几乎没用过,没有仔细了解.
2. 欠拟合
现象:Whether also in training set and test set,The effect of the model are.
原因:
- 模型过于简单;Model of learning ability is poor;
- Extraction of features is bad;When the data characteristic of the training is not、Characteristics and the existing sample label when the correlation is not strong,Fitting model easy to seen.
解决办法:
- 增加模型复杂度,Such as change the high in the linear model for nonlinear model;Add the network layer in the neural network or neuron number.
- 增加新特征:Can consider features combination such as project work.
- If the loss function to add the regular item,Can consider to reduce the regularization coefficient λ \lambda λ.
3. 正则化
写在前边:什么是正则化,不太好理解;监督学习的两个基本策略:经验风险最小化和结构风险最小化;Assuming that sample enough,So think the empirical risk minimum model is the optimal model of;When sample size is small,Empirical risk minimization to the learning effect is not very good,会产生过拟合的现象;The structural risk minimization(等价于正则化)Who had been made to fit in order to prevent.
正则化是结构风险最小化策略的实现,Is the empirical risk and add a正则化项或罚项.正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大.
Regularization item generally has the following form:
min f ∈ F 1 N ∑ i = 1 N L ( y i , f ( x i ) ) + λ J ( f ) \min _{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda J(f) f∈FminN1i=1∑NL(yi,f(xi))+λJ(f)
Among them is the first experience,第二项是正则化项. λ \lambda λTo adjust the coefficient between the two.
The first experience less risk model may be more complex(有多个非零参数),Then the second model complexity will be larger.正则化的作用是选择经验风险与模型复杂度同时较小的模型.
参考:李航《统计学习方法》 p18;
边栏推荐
- Computer Basics
- 生物识别学习资源推荐
- 复制延迟案例(1)-最终一致性
- nr部分计算
- 两端是圆角的进度条微信对接笔记
- Andrew Ng's Machine Learning Series Course Notes - Chapter 18: Application Example: Image Text Recognition (Application Example: Photo OCR)
- Kubernetes中Pod对象学习笔记
- 多数据中心操作和检测并发写入
- Research Notes (8) Deep Learning and Its Application in WiFi Human Perception (Part 1)
- The most authoritative information query steps for SCI journals!
猜你喜欢

CaDDN paper reading of monocular 3D target detection

如何评价最近爆红的FastAPI?

Scientific research notes (5) SLAC WiFi Fingerprint+ Step counter fusion positioning

侦听器watch及其和计算属性、methods方法的总结

Win8.1下QT4.8集成开发环境的搭建

最后写入胜利(丢弃并发写入)

Deep Blue Academy - Fourteen Lectures of Visual SLAM - Chapter 4 Homework

单目3D目标检测之入门

深蓝学院-视觉SLAM十四讲-第五章作业

Research Notes (8) Deep Learning and Its Application in WiFi Human Perception (Part 2)
随机推荐
Nexus 5手机使用Nexmon工具获取CSI信息
无主复制系统(3)-Quorum一致性的局限性
不会多线程还想进 BAT?精选 19 道多线程面试题,有答案边看边学
吴恩达机器学习系列课程笔记——第八章:神经网络:表述(Neural Networks: Representation)
计算属性的学习
WIN10什么都没开内存占用率过高, WIN7单网卡设置双IP
深蓝学院-视觉SLAM十四讲-第六章作业
STM32/TMS320F2812+W5500硬软件调试总结
使用 Fastai 构建食物图像分类器
被大厂强制毕业,两个月空窗期死背八股文,幸好上岸,不然房贷都还不上了
Excel操作技巧大全
Autowired注解与Resource注解的区别
2022华为软件精英挑战赛(初赛)-总结
深蓝学院-手写VIO作业-第一章
吴恩达机器学习系列课程笔记——第十六章:推荐系统(Recommender Systems)
Kubernetes中Pod对象学习笔记
复制延迟案例(3)-单调读
多主复制的适用场景(2)-需离线操作的客户端和协作编辑
jetracer_pro_2GB AI Kit system installation instructions
树莓派上QT连接海康相机