当前位置:网站首页>[Pytorch] torch.argmax() usage
[Pytorch] torch.argmax() usage
2022-07-31 14:07:00 【Rain or shine】
argmax函数:torch.argmax(input, dim=None, keepdim=False)
(1)torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号;
(2)dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index.
例如:
import numpy as np
import torch
b = torch.tensor([
[
[8, 10, 14, 21],
[9, 6, 23, 13],
[15, 32,16,11]
],
[
[31,20, 27, 17],
[28, 34, 22,33],
[36, 30, 1, 3]
],
[
[12, 29, 26, 25],
[19, 7, 5, 4],
[2, 35, 24, 18]
]
])
print('b.shape=',b.shape) #b.shape=([3,3,4])
dim_0 = torch.argmax(b,dim = 0)
print('dim_0.shape=',dim_0.shape)
print('dim_0=',dim_0)
dim_1 = torch.argmax(b,dim = 1)
print('dim_1.shape=',dim_1.shape)
print('dim_1=',dim_1)
dim_2 = torch.argmax(b,dim = 2)
print('dim_2.shape=',dim_2.shape)
print('dim_2=',dim_2)
dim_f1 = torch.argmax(b,dim = -1)
print('dim_-1.shape=',dim_f1.shape)
print('dim_-1=',dim_f1)
dim_f2 = torch.argmax(b,dim = -2)
print('dim_-2.shape=',dim_f2.shape)
print('dim_-2=',dim_f2)
代码运行结果:
b.shape= torch.Size([3, 3, 4])
dim_0.shape= torch.Size([3, 4])
dim_0= tensor([[1, 2, 1, 2],
[1, 1, 0, 1],
[1, 2, 2, 2]])
dim_1.shape= torch.Size([3, 4])
dim_1= tensor([[2, 2, 1, 0],
[2, 1, 0, 1],
[1, 2, 0, 0]])
dim_2.shape= torch.Size([3, 3])
dim_2= tensor([[3, 2, 1],
[0, 1, 0],
[1, 0, 1]])
dim_-1.shape= torch.Size([3, 3])
dim_-1= tensor([[3, 2, 1],
[0, 1, 0],
[1, 0, 1]])
dim_-2.shape= torch.Size([3, 4])
dim_-2= tensor([[2, 2, 1, 0],
[2, 1, 0, 1],
[1, 2, 0, 0]])
进程已结束,退出代码为 0
总结:
dim=0,Eliminate the highest dimension of the tensor,也就是说将b张量为([3 ,3,4])变为([3,4]);
同理,dim=1,Eliminate the second highest dimension,也就是说将b张量为([3,3 ,4])变为([3,4]);dim=2,Eliminate the third highest dimension,也就是说将b张量为([3,3,4 ])变为([3,3]);以此类推.dim=-1表示张量维度的最低维度 -2表示张量的倒数第二维度,-3表示倒数第三维度.
下一篇:
【Pytorch】F.softmax()方法说明
边栏推荐
- Miller_Rabin Miller Rabin probability sieve [template]
- Analysis of the startup source code of hyperf (2) - how the request reaches the controller
- Four ways to clear the float and its principle understanding
- What should I do if selenium is reversed?
- 代码随想录笔记_哈希_454四数相加II
- The batch size does not have to be a power of 2!The latest conclusions of senior ML scholars
- 技能大赛训练题:交换机虚拟化练习
- 技能大赛训练题:登录安全加固
- MySQL [aggregate function]
- MySQL【聚合函数】
猜你喜欢
Open Inventor 10.12 Major Improvements - Harmony Edition
对数字化时代的企业来说,数据治理难做,但应该去做
技能大赛训练题:MS15_034漏洞验证与安全加固
232层3D闪存芯片来了:单片容量2TB,传输速度提高50%
海康摄像机取流RTSP地址规则说明
jvm 一之 类加载器
49.【拷贝构造函数与重载】
C# control StatusStrip use
MySQL has played to such a degree, no wonder the big manufacturers are rushing to ask for it!
技能大赛训练题:登录安全加固
随机推荐
The recently popular domestic interface artifact Apipost experience
SetoolKit使用指南
小试牛刀:Go 反射帮我把 Excel 转成 Struct
Open Inventor 10.12 重大改进--和谐版
csdn发文助手问题
numpy矩阵和向量的保存与加载,以及使用保存的向量进行相似度计算
使用CompletableFuture进行异步处理业务
图像大面积缺失,也能逼真修复,新模型CM-GAN兼顾全局结构和纹理细节
go使用makefile脚本编译应用
以后面试官问你 为啥不建议使用Select *,请你大声回答他!
C# using ComboBox control
CLion用于STM32开发
el-tooltip的使用
232层3D闪存芯片来了:单片容量2TB,传输速度提高50%
Tortoise speed by "template"
Shell script classic case: backup of files
A detailed explanation of the usage of Async and Await in C#
ML、DL、CV常见的问题整理
Node version switching management using NVM
The operator,