当前位置:网站首页>[Pytorch] torch.argmax() usage
[Pytorch] torch.argmax() usage
2022-07-31 14:07:00 【Rain or shine】
argmax函数:torch.argmax(input, dim=None, keepdim=False)
(1)torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号;
(2)dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index.
例如:
import numpy as np
import torch
b = torch.tensor([
[
[8, 10, 14, 21],
[9, 6, 23, 13],
[15, 32,16,11]
],
[
[31,20, 27, 17],
[28, 34, 22,33],
[36, 30, 1, 3]
],
[
[12, 29, 26, 25],
[19, 7, 5, 4],
[2, 35, 24, 18]
]
])
print('b.shape=',b.shape) #b.shape=([3,3,4])
dim_0 = torch.argmax(b,dim = 0)
print('dim_0.shape=',dim_0.shape)
print('dim_0=',dim_0)
dim_1 = torch.argmax(b,dim = 1)
print('dim_1.shape=',dim_1.shape)
print('dim_1=',dim_1)
dim_2 = torch.argmax(b,dim = 2)
print('dim_2.shape=',dim_2.shape)
print('dim_2=',dim_2)
dim_f1 = torch.argmax(b,dim = -1)
print('dim_-1.shape=',dim_f1.shape)
print('dim_-1=',dim_f1)
dim_f2 = torch.argmax(b,dim = -2)
print('dim_-2.shape=',dim_f2.shape)
print('dim_-2=',dim_f2)
代码运行结果:
b.shape= torch.Size([3, 3, 4])
dim_0.shape= torch.Size([3, 4])
dim_0= tensor([[1, 2, 1, 2],
[1, 1, 0, 1],
[1, 2, 2, 2]])
dim_1.shape= torch.Size([3, 4])
dim_1= tensor([[2, 2, 1, 0],
[2, 1, 0, 1],
[1, 2, 0, 0]])
dim_2.shape= torch.Size([3, 3])
dim_2= tensor([[3, 2, 1],
[0, 1, 0],
[1, 0, 1]])
dim_-1.shape= torch.Size([3, 3])
dim_-1= tensor([[3, 2, 1],
[0, 1, 0],
[1, 0, 1]])
dim_-2.shape= torch.Size([3, 4])
dim_-2= tensor([[2, 2, 1, 0],
[2, 1, 0, 1],
[1, 2, 0, 0]])
进程已结束,退出代码为 0
总结:
dim=0,Eliminate the highest dimension of the tensor,也就是说将b张量为([3 ,3,4])变为([3,4]);
同理,dim=1,Eliminate the second highest dimension,也就是说将b张量为([3,3 ,4])变为([3,4]);dim=2,Eliminate the third highest dimension,也就是说将b张量为([3,3,4 ])变为([3,3]);以此类推.dim=-1表示张量维度的最低维度 -2表示张量的倒数第二维度,-3表示倒数第三维度.
下一篇:
【Pytorch】F.softmax()方法说明
边栏推荐
- 图像大面积缺失,也能逼真修复,新模型CM-GAN兼顾全局结构和纹理细节
- Open Inventor 10.12 Major Improvements - Harmony Edition
- Detailed guide to compare two tables using natural full join in SQL
- AWS implements scheduled tasks - Lambda+EventBridge
- ECCV 2022 | 机器人的交互感知与物体操作
- 49.【拷贝构造函数与重载】
- Solution for browser hijacking by hao360
- VU 非父子组件通信
- 清除浮动的四种方式及其原理理解
- 动作捕捉系统用于柔性机械臂的末端定位控制
猜你喜欢

技能大赛训练题:交换机的远程管理

Nuget打包并上传教程

pytorch gpu版本安装最新

The batch size does not have to be a power of 2!The latest conclusions of senior ML scholars

The pre-sale of the new Hyundai Paristi is open, and safety and comfort are not lost

LeetCode·每日一题·1161.最大层内元素和·层次遍历

动作捕捉系统用于柔性机械臂的末端定位控制

MySQL 23道经典面试吊打面试官

A detailed explanation of the usage of Async and Await in C#

【蓝桥杯选拔赛真题46】Scratch磁铁游戏 少儿编程scratch蓝桥杯选拔赛真题讲解
随机推荐
组合系列--有排列就有组合
Shell脚本经典案例:文件的备份
endnote引用
Open Inventor 10.12 Major Improvements - Harmony Edition
机器学习模型验证:被低估的重要一环
I summed up the bad MySQL interview questions
LeetCode·304竞赛·6132·使数组中所有元素都等于零·模拟·哈希
MySQL [aggregate function]
MySQL has played to such a degree, no wonder the big manufacturers are rushing to ask for it!
代码随想录笔记_哈希_454四数相加II
Selenium自动化测试之Selenium IDE
AWS implements scheduled tasks - Lambda+EventBridge
Install the latest pytorch gpu version
技能大赛训练题:登录安全加固
ML、DL、CV常见的问题整理
Sliding window method to segment data
The JVM a class loader
jOOQ 3.14 released - SQL/XML and SQL/JSON support
页面整屏滚动效果
jvm 一之 类加载器