当前位置:网站首页>yolov5改进(一) 添加注意力集中机制
yolov5改进(一) 添加注意力集中机制
2022-08-02 14:02:00 【weixin_50862344】
(1)自注意力集中机制
我想学的是注意力机制但是好像一开始跑歪了,学了自注意力机制。该说不说,讲的挺不错的。
台大李宏毅自注意力机制
input:vector set

muti-head:可能会有不同的联系

在图片中的应用:
将一个像素上的rgb看作一个vector
模型上的应用包括:①self-attention GAN
②DETR
CNN和Self-attention的对比:
CNN只考虑receptive field,Self-attention考虑全局。因此可以将cnn看作是小范围的(简化版)Self-attention
②小资料量时CNN占优,大量时Self-attention会超过CNN
对于理由李宏毅的说法是:Self-attention弹性大,CNN弹性小
RNN&SA
①SA平行化,RNN不可以平行话
②数据记忆量
(2)注意力机制
接下来就是正儿八经的注意力机制(Attention)
先上资料先上资料
pytorch应用的:
先上资料
其实csdn上是有网课的但是贫困小孩最近真是没钱花,但是我们还是可以参照他的架构进行学习

1.了解注意力机制
根据注意力作用的不同维度将注意力分成了四种基本类型:通道注意力、空间注意力、时间注意力和分支注意力,以及两种组合注意力:通道-空间注意力和空间-时间注意力。
spatial:空间
temporal:时间
画出三维坐标轴大概就长下面这样:
2.正儿八经进入注意力模块
遇到问题先看看b导的课
本小白遇到的不会的函数,例子更好理解一点
1)cat:拼接
2)view:改变cols和rows的排布

3)torch.mean通道平均值&torch.max通道最大值
torch.nn.AdaptiveAvgPool2d(output_size):提供2维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W
对比于全局平均池化可以理解成切片方式不一样!!!
注意力机制是一个即插即用的模块,理论上可以放在任何一个特征层后面。
由于放置在主干会导致网络的预训练权重无法使用,将注意力机制应用加强特征提取网络上
怎么有人连实战都写好了?还写得那么好?yolov5添加注意力集中机制这份是对应正儿八经从官网上下载下来的。
实际使用时出现什么问题我再补充吧!!感觉b导已经讲的很好了
1.如果是添加一个独立的注意力机制层,可能会影响后面层数(从backbone接受的特征图的层的层数就变了)
2.一般不添加到主干提取网络避免影响预训练权重
边栏推荐
猜你喜欢

What are the file encryption software?Keep your files safe

A number of embassies and consulates abroad have issued reminders about travel to China, personal and property safety

【ONE·Data || Getting Started with Sorting】

网络安全第二次作业

世界上最大的开源基金会 Apache 是如何运作的?

理解TCP长连接(Keepalive)

政策利空对行情没有长期影响,牛市仍将继续 2021-05-19

如何解决mysql服务无法启动1069

The future of financial services will never stop, and the bull market will continue 2021-05-28

未来的金融服务永远不会停歇,牛市仍将继续 2021-05-28
随机推荐
redis延时队列
Haystack的介绍和使用
动态刷新日志级别
史上最全!47个“数字化转型”常见术语合集,看完秒懂~
不精确微分/不完全微分(Inexact differential/Imperfect differential)
HALCON: 内存管理(Memory Management)
Sentinel源码(五)FlowSlot以及限流控制器源码分析
第二讲 软件生命周期
Kunpeng devkit & boostkit
第十一单元 序列化器
els 长条碰撞变形判断
如何选择正规的期货交易平台开户?
目标检测场景SSD-Mobilenetv1-FPN
【学习笔记】数位dp
数据机构---第六章图---图的遍历---选择题
瑞吉外卖笔记——第08讲读写分离
shell脚本“画画”
Interviewer: Can you talk about optimistic locking and pessimistic locking?
网络安全第二次作业
Sentinel源码(三)slot解析