当前位置:网站首页>Optimization method: meaning of common mathematical symbols
Optimization method: meaning of common mathematical symbols
2022-07-02 07:23:00 【Drizzle】
An optimization method : Meaning of common mathematical symbols
min x ∈ Ω f ( x ) f ( x ) stay Ω On Of most Small value \min \limits_{x \in \Omega} f(x) \qquad f(x) stay \Omega The minimum value on x∈Ωminf(x)f(x) stay Ω On Of most Small value
max x ∈ Ω f ( x ) f ( x ) stay Ω On Of most Big value \max \limits_{x \in \Omega} f(x) \qquad f(x) stay \Omega Maximum on x∈Ωmaxf(x)f(x) stay Ω On Of most Big value
s . t . suffer about beam On , s u b j e c t t o shrink Write s.\ t. \qquad Bound ,subject \ to abbreviation s. t. suffer about beam On ,subject to shrink Write
A ⊂ B Set close A package contain On Set close B A \subset B \qquad aggregate A Contained in collection B A⊂B Set close A package contain On Set close B
A ⊃ B Set close A package contain Set close B A \supset B \qquad aggregate A Contains sets B A⊃B Set close A package contain Set close B
x ∈ A x Belong to On Set close A x \in A \qquad x Belong to a collection A x∈Ax Belong to On Set close A
x ∉ A x No Belong to On Set close A x \notin A \qquad x It doesn't belong to a collection A x∈/Ax No Belong to On Set close A
A ∪ B Set close A And Set close B Of and Set A \cup B \qquad aggregate A And assemble B Union A∪B Set close A And Set close B Of and Set
A ∩ B Set close A And Set close B Of hand over Set A \cap B \qquad aggregate A And assemble B Intersection A∩B Set close A And Set close B Of hand over Set
≈ near like etc. On \approx \qquad Approximately equal to ≈ near like etc. On
∅ empty Set close \varnothing \qquad Empty set ∅ empty Set close
N ( x 0 , ε ) or N ε ( x 0 ) With spot x 0 by in heart , ε by And a half path Of adjacent Domain N(x_0, \ \varepsilon) \ or \ N_\varepsilon(x_0) \qquad With a little x_0 Centered ,\varepsilon Is the neighborhood of the radius N(x0, ε) or Nε(x0) With spot x0 by in heart ,ε by And a half path Of adjacent Domain
C k n or ( n k ) Two term type system Count , namely from n individual element plain in Every time Time take Out k individual element plain the Yes No Same as Of Group close Count C^n_k \ or \ \binom{n}{k} \qquad Binomial coefficient , From n One element at a time k The number of different combinations of elements Ckn or (kn) Two term type system Count , namely from n individual element plain in Every time Time take Out k individual element plain the Yes No Same as Of Group close Count
≜ set The righteous 、 constant etc. \triangleq \qquad Definition 、 Identity ≜ set The righteous 、 constant etc.
R real Count Domain R \qquad Real number field R real Count Domain
R n n dimension real o Clan empty between R^n \qquad n Dimensional real Euclidean space Rnn dimension real o Clan empty between
[ x ] No super too x Of most Big whole Count [x] \qquad No more than x Maximum integer for [x] No super too x Of most Big whole Count
f ( x ) ∈ C f ( x ) yes even To continue Letter Count f(x) \in C \qquad f(x) It's a continuous function f(x)∈Cf(x) yes even To continue Letter Count
f ( x ) ∈ C k f ( x ) have Yes k rank even To continue partial guide Count f(x) \in C^k \qquad f(x) have k Order continuous partial derivative f(x)∈Ckf(x) have Yes k rank even To continue partial guide Count
f : D ⊂ R n → R f ( x ) yes set The righteous stay R n in District Domain D On Of real value Letter Count f : D \subset R^n \rightarrow R \qquad f(x) Is defined in R^n Middle region D Real valued functions on f:D⊂Rn→Rf(x) yes set The righteous stay Rn in District Domain D On Of real value Letter Count
∥ x ∥ towards The amount x Of o type Fan Count , namely ∥ x ∥ = ( ∑ i = 1 n x i 2 ) 1 / 2 \parallel x \parallel \qquad vector x The European norm of , namely \parallel x \parallel = (\sum \limits^n \limits_{i=1} x^2_i) ^{1/2} ∥x∥ towards The amount x Of o type Fan Count , namely ∥x∥=(i=1∑nxi2)1/2
( x , y ) or x T y towards The amount x 、 y Of Inside product (x, y) \ or \ x^Ty \qquad vector x、y Inner product (x,y) or xTy towards The amount x、y Of Inside product
d e t ( A ) or ∣ A ∣ Moment front A Of That's ok Column type det(A) \ or \ |A| \qquad matrix A The determinant of det(A) or ∣A∣ Moment front A Of That's ok Column type
r ( A ) Moment front A Of Rank r(A) \qquad matrix A The rank of r(A) Moment front A Of Rank
▽ f ( x ) f ( x ) Of ladder degree , ▽ f ( x ) = ( ∂ f ∂ x 1 , ∂ f ∂ x 2 , ⋯   , ∂ f ∂ x n ) T \bigtriangledown f(x) \qquad f(x) Gradient of ,\bigtriangledown f(x) = (\frac{\partial f}{\partial x_1}, \ \frac{\partial f}{\partial x_2}, \ \cdots, \ \frac{\partial f}{\partial x_n})^T ▽f(x)f(x) Of ladder degree ,▽f(x)=(∂x1∂f, ∂x2∂f, ⋯, ∂xn∂f)T
H ( x ) or ▽ 2 f ( x ) f ( x ) Of H e s s i a n front , H ( x ) or ▽ 2 f ( x ) ≜ ( ∂ 2 f ( x ) ∂ x i ∂ x j ) n × n H(x) \ or \ \bigtriangledown ^2 f(x) \qquad f(x) Of Hessian front ,H(x) \ or \ \bigtriangledown ^2 f(x) \triangleq (\frac{\partial ^2 f(x)}{\partial x_i \partial x_j})_{n \times n} H(x) or ▽2f(x)f(x) Of Hessian front ,H(x) or ▽2f(x)≜(∂xi∂xj∂2f(x))n×n
min { x 1 , x 2 , ⋯   , x n } Count x 1 , x 2 , ⋯   , x n in Of most Small person \min \{x_1, x_2, \cdots, x_n\} \qquad Count x_1, x_2, \cdots, x_n The smallest of them min{ x1,x2,⋯,xn} Count x1,x2,⋯,xn in Of most Small person
max { x 1 , x 2 , ⋯   , x n } Count x 1 , x 2 , ⋯   , x n in Of most Big person \max \{x_1, x_2, \cdots, x_n\} \qquad Count x_1, x_2, \cdots, x_n The biggest of all max{ x1,x2,⋯,xn} Count x1,x2,⋯,xn in Of most Big person
inf x ∈ X f ( x ) f ( x ) stay X On Of Next indeed world \inf \limits_{x \in X} f(x) \qquad f(x) stay X Supremum and infimum x∈Xinff(x)f(x) stay X On Of Next indeed world
sup x ∈ X f ( x ) f ( x ) stay X On Of On indeed world \sup \limits_{x \in X} f(x) \qquad f(x) stay X Supremum of supremum x∈Xsupf(x)f(x) stay X On Of On indeed world
x ∗ most optimal Explain x^* \qquad Optimal solution x∗ most optimal Explain
f ∗ Objective mark Letter Count Of most optimal value f^* \qquad The optimal value of the objective function f∗ Objective mark Letter Count Of most optimal value
边栏推荐
猜你喜欢

【调参Tricks】WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach

SSM学生成绩信息管理系统

Check log4j problems using stain analysis

Illustration of etcd access in kubernetes

Sqli-labs customs clearance (less2-less5)

【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization

Practice and thinking of offline data warehouse and Bi development

Sqli labs customs clearance summary-page2

Principle analysis of spark

Agile development of software development pattern (scrum)
随机推荐
Feeling after reading "agile and tidy way: return to origin"
MapReduce与YARN原理解析
ssm人事管理系统
数仓模型事实表模型设计
Oracle 11.2.0.3 handles the problem of continuous growth of sysaux table space without downtime
Typeerror in allenlp: object of type tensor is not JSON serializable error
pySpark构建临时表报错
【信息检索导论】第二章 词项词典与倒排记录表
SSM student achievement information management system
2021-07-17c /cad secondary development creation circle (5)
SSM二手交易网站
矩阵的Jordan分解实例
一份Slide两张表格带你快速了解目标检测
Oracle EBs and apex integrated login and principle analysis
Pratique et réflexion sur l'entrepôt de données hors ligne et le développement Bi
ssm超市订单管理系统
【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization
Changes in foreign currency bookkeeping and revaluation general ledger balance table (Part 2)
ORACLE EBS接口开发-json格式数据快捷生成
Analysis of MapReduce and yarn principles