当前位置:网站首页>Yolo of Darknet_ Forward of layer_ yolo_ Layer comments
Yolo of Darknet_ Forward of layer_ yolo_ Layer comments
2022-07-27 00:44:00 【Knife, kesselamo】
- Did two things : Determine the positive and negative samples , Calculation loss
void forward_yolo_layer(const layer l, network_state state)
{
int i, j, b, t, n;
// batch*3*85*w*h
memcpy(l.output, state.input, l.outputs*l.batch * sizeof(float));
#ifndef GPU
for (b = 0; b < l.batch; ++b) {
for (n = 0; n < l.n; ++n) {
int index = entry_index(l, b, n*l.w*l.h, 0);
// 0,1 Location execution sigmoid
activate_array(l.output + index, 2 * l.w*l.h, LOGISTIC); // x,y,
scal_add_cpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1); // scale x,y
index = entry_index(l, b, n*l.w*l.h, 4);
// 4~84 Location execution sigmoid, Confidence and category probability
activate_array(l.output + index, (1 + l.classes)*l.w*l.h, LOGISTIC);
}
}
#endif
// delta is zeroed
memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
if (!state.train) return;
//float avg_iou = 0;
float tot_iou = 0;
float tot_giou = 0;
float tot_diou = 0;
float tot_ciou = 0;
float tot_iou_loss = 0;
float tot_giou_loss = 0;
float tot_diou_loss = 0;
float tot_ciou_loss = 0;
float recall = 0;
float recall75 = 0;
float avg_cat = 0;
float avg_obj = 0;
float avg_anyobj = 0;
int count = 0;
int class_count = 0;
*(l.cost) = 0;
for (b = 0; b < l.batch; ++b) {
// Calculation error : Traverse anchor, And gt Maximum IOU Greater than the threshold is a positive sample
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
// Get... According to the index box Information about
box pred = get_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h);
float best_match_iou = 0;
int best_match_t = 0;
float best_iou = 0;
int best_t = 0;
// Calculate the number of... With the current grid n individual anchor The best match gt
for (t = 0; t < l.max_boxes; ++t) {
// batch*90*5
// Take the current picture t individual gt
box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
if (class_id >= l.classes || class_id < 0) {
printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1);
printf("\n truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id);
if (check_mistakes) getchar();
continue; // if label contains class_id more than number of classes in the cfg-file and class_id check garbage value
}
if (!truth.x) break; // continue;
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4);
float objectness = l.output[obj_index];
if (isnan(objectness) || isinf(objectness)) l.output[obj_index] = 0;
// Judge output Is there a category probability greater than the threshold in
int class_id_match = compare_yolo_class(l.output, l.classes, class_index, l.w*l.h, objectness, class_id, 0.25f);
float iou = box_iou(pred, truth);
if (iou > best_match_iou && class_id_match == 1) {
best_match_iou = iou;
best_match_t = t;
}
if (iou > best_iou) {
best_iou = iou;
best_t = t;
}
}
// x,y,w,h,c Medium c
int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4);
avg_anyobj += l.output[obj_index];
// Error term , Initialize to negative sample error ,iou If the threshold is met, zero is assigned , Wait for the following assignment positive sample error or ignore
l.delta[obj_index] = l.cls_normalizer * (0 - l.output[obj_index]);
if (best_match_iou > l.ignore_thresh) {
l.delta[obj_index] = 0;
}
// Multiply the negative sample error by one scale
else if (state.net.adversarial) {
// 80 Index of the first of the categories
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
int stride = l.w*l.h;
float scale = pred.w * pred.h;
if (scale > 0) scale = sqrt(scale);
l.delta[obj_index] = scale * l.cls_normalizer * (0 - l.output[obj_index]);
int cl_id;
for (cl_id = 0; cl_id < l.classes; ++cl_id) {
if(l.output[class_index + stride*cl_id] * l.output[obj_index] > 0.25)
l.delta[class_index + stride*cl_id] = scale * (0 - l.output[class_index + stride*cl_id]);
}
}
if (best_iou > l.truth_thresh) {
// Positive sample error
l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]);
// Best match gt Categories
int class_id = state.truth[best_t*(4 + 1) + b*l.truths + 4];
if (l.map) class_id = l.map[class_id];
// 80 Index of the first of the categories
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
// Calculate the category error
delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1);
const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
// Calculation xywh error
delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta);
}
}
}
}
// Calculation gt With the grid anchor Maximum IOU, Greater than the threshold is a positive sample
for (t = 0; t < l.max_boxes; ++t) {
// take gt Information about
box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
if (truth.x < 0 || truth.y < 0 || truth.x > 1 || truth.y > 1 || truth.w < 0 || truth.h < 0) {
char buff[256];
printf(" Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", truth.x, truth.y, truth.w, truth.h);
sprintf(buff, "echo \"Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f\" >> bad_label.list",
truth.x, truth.y, truth.w, truth.h);
system(buff);
}
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
if (class_id >= l.classes || class_id < 0) continue; // if label contains class_id more than number of classes in the cfg-file and class_id check garbage value
if (!truth.x) break; // continue;
// Calculation gt With which anchor Best match
float best_iou = 0;
int best_n = 0;
i = (truth.x * l.w);
j = (truth.y * l.h);
box truth_shift = truth;
truth_shift.x = truth_shift.y = 0;
for (n = 0; n < l.total; ++n) {
box pred = {
0 };
pred.w = l.biases[2 * n] / state.net.w;
pred.h = l.biases[2 * n + 1] / state.net.h;
float iou = box_iou(pred, truth_shift);
if (iou > best_iou) {
best_iou = iou;
best_n = n;
}
}
// Judge anchor Whether it belongs to this layer
int mask_n = int_index(l.mask, best_n, l.n);
if (mask_n >= 0) {
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
if (l.map) class_id = l.map[class_id];
int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta);
// range is 0 <= 1
tot_iou += all_ious.iou;
tot_iou_loss += 1 - all_ious.iou;
// range is -1 <= giou <= 1
tot_giou += all_ious.giou;
tot_giou_loss += 1 - all_ious.giou;
tot_diou += all_ious.diou;
tot_diou_loss += 1 - all_ious.diou;
tot_ciou += all_ious.ciou;
tot_ciou_loss += 1 - all_ious.ciou;
int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4);
avg_obj += l.output[obj_index];
l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]);
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
//printf(" label: class_id = %d, truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", class_id, truth.x, truth.y, truth.w, truth.h);
//printf(" mask_n = %d, l.output[obj_index] = %f, l.output[class_index + class_id] = %f \n\n", mask_n, l.output[obj_index], l.output[class_index + class_id]);
++count;
++class_count;
if (all_ious.iou > .5) recall += 1;
if (all_ious.iou > .75) recall75 += 1;
}
// iou_thresh
// gt Grid IOU Greater than the threshold anchor It is also a positive sample
for (n = 0; n < l.total; ++n) {
int mask_n = int_index(l.mask, n, l.n);
if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) {
box pred = {
0 };
pred.w = l.biases[2 * n] / state.net.w;
pred.h = l.biases[2 * n + 1] / state.net.h;
float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU
// iou, n
if (iou > l.iou_thresh) {
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
if (l.map) class_id = l.map[class_id];
int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
ious all_ious = delta_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta);
// range is 0 <= 1
tot_iou += all_ious.iou;
tot_iou_loss += 1 - all_ious.iou;
// range is -1 <= giou <= 1
tot_giou += all_ious.giou;
tot_giou_loss += 1 - all_ious.giou;
tot_diou += all_ious.diou;
tot_diou_loss += 1 - all_ious.diou;
tot_ciou += all_ious.ciou;
tot_ciou_loss += 1 - all_ious.ciou;
int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4);
avg_obj += l.output[obj_index];
l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]);
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
++count;
++class_count;
if (all_ious.iou > .5) recall += 1;
if (all_ious.iou > .75) recall75 += 1;
}
}
}
}
// averages the deltas obtained by the function: delta_yolo_box()_accumulate
// Average the number of categories
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
const int stride = l.w*l.h;
averages_yolo_deltas(class_index, box_index, stride, l.classes, l.delta);
}
}
}
}
if (count == 0) count = 1;
if (class_count == 0) class_count = 1;
//*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
//printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", state.index, avg_iou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count);
int stride = l.w*l.h;
float* no_iou_loss_delta = (float *)calloc(l.batch * l.outputs, sizeof(float));
memcpy(no_iou_loss_delta, l.delta, l.batch * l.outputs * sizeof(float));
for (b = 0; b < l.batch; ++b) {
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
no_iou_loss_delta[index + 0 * stride] = 0;
no_iou_loss_delta[index + 1 * stride] = 0;
no_iou_loss_delta[index + 2 * stride] = 0;
no_iou_loss_delta[index + 3 * stride] = 0;
}
}
}
}
float classification_loss = l.cls_normalizer * pow(mag_array(no_iou_loss_delta, l.outputs * l.batch), 2);
free(no_iou_loss_delta);
float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2);
float iou_loss = loss - classification_loss;
float avg_iou_loss = 0;
// gIOU loss + MSE (objectness) loss
if (l.iou_loss == MSE) {
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
}
else {
// Always compute classification loss both for iou + cls loss and for logging with mse loss
// TODO: remove IOU loss fields before computing MSE on class
// probably split into two arrays
if (l.iou_loss == GIOU) {
avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_giou_loss / count) : 0;
}
else {
avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_iou_loss / count) : 0;
}
*(l.cost) = avg_iou_loss + classification_loss;
}
loss /= l.batch;
classification_loss /= l.batch;
iou_loss /= l.batch;
fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, cls: %.2f) Region %d Avg (IOU: %f, GIOU: %f), Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, class_loss = %f, iou_loss = %f, total_loss = %f \n",
(l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.cls_normalizer, state.index, tot_iou / count, tot_giou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count,
classification_loss, iou_loss, loss);
}
边栏推荐
- Helicopter control system based on Simulink
- 关于Redis问题的二三事
- JSCORE day_01(6.30) RegExp 、 Function
- 动态联编和静态联编、以及多态
- Blue Bridge Cup 1004 [recursive] cow story
- JSCORE day_04(7.5)
- Web middleware log analysis script 2.0 (shell script)
- Complete review of parsing web pages
- 蓝桥杯 1004 [递归]母牛的故事
- 【AtCoder Beginner Contest 261 (A·B·C·D)】
猜你喜欢
随机推荐
Mysql常用函数(汇总)
9_逻辑回归(Logistic Regression)
MySQL common functions (summary)
5_ Linear regression
[2. TMUX operation]
QML type system
Collection of 3D LUT related articles
Openharmony quick start
10_评价分类结果(Evaluate classification)
10_ Evaluate classification
八皇后 N皇后
[LeetCode] 无重复最长字符串
JSCORE day_04(7.5)
DOM day_ 03 (7.11) event bubbling mechanism, event delegation, to-do items, block default events, mouse coordinates, page scrolling events, create DOM elements, DOM encapsulation operations
A simple prime number program. Beginners hope that older bosses can have a look
2022_ SummerBlog_ 008
[Qt]元对象系统
重学JSON.stringify
3_ Jupiter notebook, numpy and mattlotlib
6_ Gradient descent method
![[PCB open source sharing] stc8a8k64d4 development board](/img/df/14f47295dace857c0a32545c3eca39.png)








