当前位置:网站首页>Detailed explanation and reproduction of AlexNet network
Detailed explanation and reproduction of AlexNet network
2022-08-03 07:03:00 【WGS。】
详细请看:
''' Here the convolution kernel number set to the half of the original '''
class AlexNet(nn.Module):
def __init__(self, num_classes=1000, init_weights=False):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
# pytorch tensor通道顺序:[batch_size, channel, height, width],通道数、高、宽,The following comments to ignorebatch_size
# 这里为了方便padding直接为2了,The results for the decimal words will discard decimal point
nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[48, 55, 55]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[48, 27, 27]
nn.Conv2d(48, 128, kernel_size=5, padding=2), # output[128, 27, 27]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13]
nn.Conv2d(128, 192, kernel_size=3, padding=1), # output[192, 13, 13]
nn.ReLU(inplace=True),
nn.Conv2d(192, 192, kernel_size=3, padding=1), # output[192, 13, 13]
nn.ReLU(inplace=True),
nn.Conv2d(192, 128, kernel_size=3, padding=1), # output[128, 13, 13]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6]
)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(128 * 6 * 6, 2048),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(2048, 2048),
nn.ReLU(inplace=True),
nn.Linear(2048, num_classes),
)
# 初始化权重
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, start_dim=1) # dim=1是channel的维度
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
边栏推荐
猜你喜欢
随机推荐
MySQL 操作语句大全(详细)
MySql之json_extract函数处理json字段
Nacos与Eureka的区别
pyspark df 二次排序
Redis-记一次docker下使用redis
Embedding two implementations of the torch code
C语言实现通讯录功能(400行代码实现)
【dllogger bug】AttributeError: module ‘dllogger‘ has no attribute ‘StdOutBackend‘
ES6中 Symbol 的基础学习,迭代器和生成器的基本用法
sql中 exists的用法
DIFM网络详解及复现
Detailed explanation of AutoInt network and pytorch reproduction
MySQL中,对结果或条件进行字符串拼接
MySQL必知必会
2021年PHP-Laravel面试题问卷题 答案记录
IPV4地址详解
编程语言有什么
微信小程序 - 监听 TabBar 切换点击事件
FiBiNet torch复现
【地平线 开发板】实现模型转换并在地平线开发板上部署的全过程操作记录(魔改开发包)









