当前位置:网站首页>连续型特征做embedding代码示例
连续型特征做embedding代码示例
2022-08-03 05:29:00 【WGS.】
为什么要将连续特征也做emb?
● 一方面连续特征emb后能更充分的与其它特征进行交叉;
● 另一方面可以使得学习更加充分,避免数值微小的变化带来预测结果的剧烈变化。

实现思路:
- 对于连续值做归一化;
- 然后新增列用以做label encoder;
- 对编码的tensor做emb;
- 取出连续值tensor,然后相乘;
ddd = pd.DataFrame({
'x1': [0.001, 0.002, 0.003], 'x2': [0.1, 0.1, 0.2]})
'''将编码后的值拼回去'''
dense_cols = ['x1', 'x2']
dense_cols_enc = [c + '_enc' for c in dense_cols]
for i in range(len(dense_cols)):
enc = LabelEncoder()
ddd[dense_cols_enc[i]] = enc.fit_transform(ddd[dense_cols[i]].values).copy()
print(ddd)
'''计算fields'''
dense_fields = ddd[dense_cols_enc].max().values + 1
dense_fields = dense_fields.astype(np.int32)
offsets = np.array((0, *np.cumsum(dense_fields)[:-1]), dtype=np.longlong)
print(dense_fields, offsets)
'''用编码后的做emb'''
tensor = torch.tensor(ddd.values)
emb_tensor = tensor[:, -2:] + tensor.new_tensor(offsets).unsqueeze(0)
emb_tensor = emb_tensor.long()
embedding = nn.Embedding(sum(dense_fields) + 1, embedding_dim=4)
torch.nn.init.xavier_uniform_(embedding.weight.data)
dense_emb = embedding(emb_tensor)
print('---', dense_emb.shape)
print(dense_emb.data)
# print(embedding.weight.shape)
# print(embedding.weight.data)
# print(embedding.weight.data[1])
'''取出原来的数值特征并增加维度用于相乘'''
dense_tensor = torch.unsqueeze(tensor[:, :2], dim=-1)
print('---', dense_tensor.shape)
print(dense_tensor)
dense_emb = dense_emb * dense_tensor
print(dense_emb)
x1 x2 x1_enc x2_enc
0 0.001 0.1 0 0
1 0.002 0.1 1 0
2 0.003 0.2 2 1
[3 2] [0 3]
--- torch.Size([3, 2, 4])
tensor([[[-0.1498, -0.5054, 0.0211, -0.2746],
[ 0.0133, 0.3257, -0.2117, -0.0956]],
[[-0.1296, -0.4524, 0.5334, 0.0894],
[ 0.0133, 0.3257, -0.2117, -0.0956]],
[[ 0.5597, 0.3630, -0.7686, -0.1408],
[ 0.6840, -0.5328, 0.0422, -0.6365]]])
--- torch.Size([3, 2, 1])
tensor([[[0.0010],
[0.1000]],
[[0.0020],
[0.1000]],
[[0.0030],
[0.2000]]], dtype=torch.float64)
tensor([[[-1.4985e-04, -5.0542e-04, 2.1051e-05, -2.7457e-04],
[ 1.3284e-03, 3.2572e-02, -2.1174e-02, -9.5578e-03]],
[[-2.5924e-04, -9.0472e-04, 1.0668e-03, 1.7884e-04],
[ 1.3284e-03, 3.2572e-02, -2.1174e-02, -9.5578e-03]],
[[ 1.6790e-03, 1.0891e-03, -2.3059e-03, -4.2229e-04],
[ 1.3679e-01, -1.0656e-01, 8.4448e-03, -1.2731e-01]]],
dtype=torch.float64, grad_fn=<MulBackward0>)
reference:
https://www.zhihu.com/question/352399723/answer/869939360
有关offsets可以看:
https://blog.csdn.net/qq_42363032/article/details/125928623?spm=1001.2014.3001.5501
边栏推荐
猜你喜欢

PostMan测试接口-----上传文件、导出excel

MySql之json_extract函数处理json字段

HDI与普通PCB的4点主要区别

C#使用Oracle.ManagedDataAccess连接C#数据库

【云原生 · Kubernetes】Kubernetes简介及基本组件

【YOLOv3 SPP 数据集准备】YOLOv3 SPP数据集准备代码理解

ES6 - 剩余参数,Array的扩展方法,String的扩展方法

ES 中时间日期类型 “yyyy-MM-dd HHmmss” 的完全避坑指南

【项目案例】配置小型网络WLAN基本业务示例

Content type ‘applicationx-www-form-urlencoded;charset=UTF-8‘ not supported“【已解决】
随机推荐
【设计指南】避免PCB板翘,合格的工程师都会这样设计!
Docker安装Mysql
MySQL的触发器
nvm 卸载详细流程
Charles抓包显示<unknown>解决方案
JUC并发编程深入浅出!
MySQL 操作语句大全(详细)
ESXI中损坏虚拟机数据如何找回
5 个开源的 Rust Web 开发框架,你选择哪个?
2021新版idea过滤无用文件.idea .iml
一根网线完美解决IPTV+千兆网复用,还不来试试
IDEA连接mysql又报错!Server returns invalid timezone. Go to ‘Advanced‘ tab and set ‘serverTimezone‘ prope
MySql的安装配置超详细教程与简单的建库建表方法
SQLServer2019安装(Windows)
ESXI主机给虚拟机添加USB加密狗设备
mysql的配置文件(my.ini或者 my.cnf)所在位置
PCB板上的字母代表哪些元器件?一文看全!
【YOLOv3 SPP 数据集准备】YOLOv3 SPP数据集准备代码理解
C#切换输入法
Oracle 11g静默安装