当前位置:网站首页>[combinatorics] exponential generating function (proving that the exponential generating function solves the arrangement of multiple sets)
[combinatorics] exponential generating function (proving that the exponential generating function solves the arrangement of multiple sets)
2022-07-03 18:18:00 【Programmer community】
List of articles
- One 、 Prove that the exponential generating function solves the arrangement of multiple sets
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
- 【 Combinatorial mathematics 】 Exponential generating function ( The concept of exponential generating function | Permutation number exponential generating function = General generating function of combinatorial number | Example of exponential generating function )
One 、 Prove that the exponential generating function solves the arrangement of multiple sets
Multiple sets
S
=
{
n
1
⋅
a
1
,
n
2
⋅
a
2
,
⋯
,
n
k
⋅
a
k
}
S=\{ n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k \}
S={ n1⋅a1,n2⋅a2,⋯,nk⋅ak}
Multiple sets
S
S
S Of
r
r
r Number of permutations Composition sequence
{
a
r
}
\{ a_r \}
{ ar} , The corresponding exponential generating function is :
G
e
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
f
n
k
(
x
)
G_e(x) = f_{n_1}(x) f_{n_2}(x) \cdots f_{n_k}(x)
Ge(x)=fn1(x)fn2(x)⋯fnk(x) *
Each generated function item
f
n
i
(
x
)
f_{n_i}(x)
fni(x) yes
f
n
i
(
x
)
=
1
+
x
+
x
2
2
!
+
⋯
+
x
n
i
n
i
!
f_{n_i}(x) = 1 + x + \cfrac{x^2}{2!} + \cdots + \cfrac{x^{n_i}}{n_i!}
fni(x)=1+x+2!x2+⋯+ni!xni *
take
G
e
(
x
)
G_e(x)
Ge(x) an , Among them
r
r
r The coefficient is the permutation number of multiple sets ; *
Prove the purpose of the above exponential generating function :
Put the above Exponential generating function an ,
Exponential generating function term
G
e
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
f
n
k
(
x
)
G_e(x) = f_{n_1}(x) f_{n_2}(x) \cdots f_{n_k}(x)
Ge(x)=fn1(x)fn2(x)⋯fnk(x) , from
k
k
k Multiply the factors to get ,
Each factor will provide a
x
m
1
m
1
!
\cfrac{x^{m_1}}{m_1!}
m1!xm1 composition ,
x
m
1
m
1
!
\cfrac{x^{m_1}}{m_1!}
m1!xm1 From the first factor ,
x
m
2
m
2
!
\cfrac{x^{m_2}}{m_2!}
m2!xm2 From the second factor ,
⋮
\vdots
⋮
x
m
k
m
k
!
\cfrac{x^{m_k}}{m_k!}
mk!xmk From
k
k
k Personal factor ,
Multiply the above factors
x
m
1
m
1
!
⋅
x
m
2
m
2
!
⋯
x
m
k
m
k
!
\cfrac{x^{m_1}}{m_1!} \cdot \cfrac{x^{m_2}}{m_2!} \cdots \cfrac{x^{m_k}}{m_k!}
m1!xm1⋅m2!xm2⋯mk!xmk
among
m
1
+
m
2
+
⋯
+
m
r
=
r
,
m_1 + m_2 + \cdots + m_r = r \ \ \ ,
m1+m2+⋯+mr=r ,
0
≤
m
i
≤
n
i
,
0 \leq m_i \leq n_i \ \ ,
0≤mi≤ni ,
i
=
0
,
1
,
2
,
⋯
,
k
i= 0,1,2, \cdots , k
i=0,1,2,⋯,k
x
m
1
m
1
!
⋅
x
m
2
m
2
!
⋯
x
m
k
m
k
!
\cfrac{x^{m_1}}{m_1!} \cdot \cfrac{x^{m_2}}{m_2!} \cdots \cfrac{x^{m_k}}{m_k!}
m1!xm1⋅m2!xm2⋯mk!xmk Corresponding to the subitem after the expansion of the exponential generating function ;
x
m
1
m
1
!
⋅
x
m
2
m
2
!
⋯
x
m
k
m
k
!
\ \ \ \ \cfrac{x^{m_1}}{m_1!} \cdot \cfrac{x^{m_2}}{m_2!} \cdots \cfrac{x^{m_k}}{m_k!}
m1!xm1⋅m2!xm2⋯mk!xmk
=
x
m
1
+
m
2
+
⋯
+
m
k
m
1
!
m
2
!
⋯
m
k
!
=\cfrac{x^{m_1 + m_2 + \cdots + m_k}}{m_1!m_2!\cdots m_k!}
=m1!m2!⋯mk!xm1+m2+⋯+mk
=
x
r
m
1
!
m
2
!
⋯
m
k
!
⋅
r
!
r
!
=\cfrac{x^{r}}{m_1!m_2!\cdots m_k!} \cdot \cfrac{r!}{r!}
=m1!m2!⋯mk!xr⋅r!r!
=
x
r
r
!
⋅
r
!
m
1
!
m
2
!
⋯
m
k
!
=\cfrac{x^{r}}{r!} \cdot \cfrac{r!}{m_1!m_2!\cdots m_k!}
=r!xr⋅m1!m2!⋯mk!r!
r
!
m
1
!
m
2
!
⋯
m
k
!
\cfrac{r!}{m_1!m_2!\cdots m_k!}
m1!m2!⋯mk!r! Is a multiple set
r
r
r The total number of permutations of elements
Yes
r
r
r Elements , The number of methods selected is
m
1
+
m
2
+
⋯
+
m
r
=
r
m_1 + m_2 + \cdots + m_r = r
m1+m2+⋯+mr=r Number of nonnegative integer solutions , When the configuration is complete , Again Make a full arrangement , You can get
r
r
r array ;
( First choose , And then we'll do a full permutation )
a
r
=
∑
r
!
m
1
!
m
2
!
⋯
m
k
!
a_r = \sum\cfrac{r!}{m_1!m_2!\cdots m_k!}
ar=∑m1!m2!⋯mk!r!
Sum above , Each item is satisfied
m
1
+
m
2
+
⋯
+
m
r
=
r
m_1 + m_2 + \cdots + m_r = r
m1+m2+⋯+mr=r Nonnegative integer solution of the equation , Each nonnegative integer solution corresponds to the
S
S
S Of
r
r
r Combine ;
The total permutation of the combination is
r
!
m
1
!
m
2
!
⋯
m
k
!
\cfrac{r!}{m_1!m_2!\cdots m_k!}
m1!m2!⋯mk!r! ,
Sum above
a
r
=
∑
r
!
m
1
!
m
2
!
⋯
m
k
!
a_r = \sum\cfrac{r!}{m_1!m_2!\cdots m_k!}
ar=∑m1!m2!⋯mk!r! yes Sum all nonnegative integer solutions that satisfy the equation ;
边栏推荐
- PHP MySQL order by keyword
- Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up
- SDNUOJ1015
- 一入“远程”终不悔,几人欢喜几人愁。| 社区征文
- Kotlin的協程:上下文
- 分布式的任务分发框架-Gearman
- Gear2021 monthly update - December
- webcodecs
- Ml (machine learning) softmax function to realize the classification of simple movie categories
- English語法_名詞 - 分類
猜你喜欢
PHP MySQL inserts multiple pieces of data
List的stream中Long对象与long判等问题记录
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)
AcWing 271. 杨老师的照相排列【多维DP】
Investigation on the operation prospect of the global and Chinese Anti enkephalinase market and analysis report on the investment strategy of the 14th five year plan 2022-2028
How to deploy applications on kubernetes cluster
Discussion sur la logique de conception et de mise en oeuvre du processus de paiement
English语法_名词 - 分类
(8) HS corner detection
Redis core technology and practice - learning notes (11): why not just string
随机推荐
Nodejs (01) - introductory tutorial
G1 garbage collector of garbage collector
Research on Swift
Classroom attendance system based on face recognition tkinter+openpyxl+face_ recognition
This diversion
Win 11 major updates, new features love love.
Computer graduation project PHP library book borrowing management system
An academic paper sharing and approval system based on PHP for computer graduation design
AcWing 271. 杨老师的照相排列【多维DP】
Analysis report on production and marketing demand and investment forecast of China's PVC industry from 2021 to 2026
PHP MySQL create database
Redis core technology and practice - learning notes (VI) how to achieve data consistency between master and slave Libraries
Kotlin的协程:上下文
Redis cache avalanche, penetration, breakdown
Postfix tips and troubleshooting commands
小程序 多tab 多swiper + 每个tab分页
Postfix 技巧和故障排除命令
The second largest gay dating website in the world was exposed, and the status of programmers in 2022
[combinatorics] generating function (positive integer splitting | unordered | ordered | allowed repetition | not allowed repetition | unordered not repeated splitting | unordered repeated splitting)
Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up