当前位置:网站首页>深度学习理论:model.fit 函数参数详解
深度学习理论:model.fit 函数参数详解
2022-08-02 03:27:00 【正在黑化的KS】

_____________________________________________________________________________
model.fit( x, y, batch_size=32, epochs=10, verbose=1, callbacks=None,
validation_split=0.0, validation_data=None, shuffle=True,
class_weight=None, sample_weight=None, initial_epoch=0)_____________________________________________________________________________
- x:输入数据。如果模型只有一个输入,那么x的类型是numpy
array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array- y:标签,numpy array
- batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。
- epochs:整数,训练终止时的epoch值,训练将在达到该epoch值时停止,当没有设置initial_epoch时,它就是训练的总轮数,否则训练的总轮数为epochs - inital_epoch
- verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
- callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数
- validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。
- validation_data:形式为(X,Y)的tuple,是指定的验证集。此参数将覆盖validation_spilt。
- shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。
class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)
sample_weight:权值的numpy
array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode=’temporal’。- initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。
- steps_per_epoch:指定每个epoch所使用的迭代次数,默认每次用尽数据集
fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况
边栏推荐
猜你喜欢
随机推荐
SATA M2 SSD 无法安装系统的解决方法
xxe of CTF
解决flex布局warp自动换行下最后一行居中问题
广告电商「私域打工人」职业前景:你离月薪6万,还差多远?
大厂底层必修:“应用程序与 AMS 的通讯实现”
The learning path of a network security mouse - the basic use of nmap
Selenium-WebDriverApi接口
CTF introductory notes ping
元宇宙是一个炒作的科幻概念,还是互联网发展的下半场?
Activity
记账凭证的种类、记账凭证的基本内容、记账凭证的填制要求、记账凭证的审核
还原最真实、最全面的一线大厂面试题
v-bind usage: class dynamic binding object array style style and function method
浅谈性能优化:APP的启动流程分析与优化
Sensitive information leakage
在 UUP dump 被墙的情况下如何用 UUP 下载 ISO 镜像
如何在正则表达式里表达可能存在也可能不存在的内容?
功能强大的黑科技网站--10连
重点考:从债劵的角度来看交易性金融资产
成本会计的概念、产品成本核算的要求、产品成本核算的对象与成本项目、产品成本的归集和分配(可能考判断)、产品成本计算方法 (三种:产品的品种(品种法),批次(分批法),步骤(分步法))









