当前位置:网站首页>[combinatorics] recursive equation (example of solving recursive equation without multiple roots | complete process of solving recursive equation without multiple roots)
[combinatorics] recursive equation (example of solving recursive equation without multiple roots | complete process of solving recursive equation without multiple roots)
2022-07-03 17:06:00 【Programmer community】
List of articles
- One 、 Fibonacci sequence solution
- Two 、 Complete process of solving recursive equations without multiple roots
One 、 Fibonacci sequence solution
1 . Fibonacci sequence example :
( 1 ) Fibonacci sequence :
1
,
1
,
2
,
3
,
5
,
8
,
13
,
⋯
1 , 1 , 2 , 3 , 5 , 8 , 13 , \cdots
1,1,2,3,5,8,13,⋯
( 2 ) Recurrence equation :
F
(
n
)
=
F
(
n
−
1
)
+
F
(
n
−
2
)
F(n) = F(n-1) + F(n-2)
F(n)=F(n−1)+F(n−2)
describe : The first
n
n
n Item equal to
n
−
1
n-1
n−1 term and The first
n
−
2
n-2
n−2 Sum of items ;
Such as : The first
4
4
4 Item value
F
(
4
)
=
5
F(4) = 5
F(4)=5 , Is equal to
The first
4
−
1
=
3
4-1=3
4−1=3 Item value
F
(
4
−
1
)
=
F
(
3
)
=
3
F(4-1)=F(3) = 3
F(4−1)=F(3)=3
add The first
4
−
2
=
2
4-2=2
4−2=2 Item value
F
(
4
−
2
)
=
F
(
2
)
=
2
F(4-2) = F(2) =2
F(4−2)=F(2)=2 ;
( 3 ) initial value :
F
(
0
)
=
1
,
F
(
1
)
=
1
F(0) = 1 , F(1) = 1
F(0)=1,F(1)=1
according to
F
(
0
)
=
1
,
F
(
1
)
=
1
F(0) = 1, F(1) = 1
F(0)=1,F(1)=1 You can calculate
F
(
2
)
F(2)
F(2) , according to
F
(
1
)
,
F
(
2
)
F(1),F(2)
F(1),F(2) You can calculate
F
(
3
)
F(3)
F(3) , according to
F
(
2
)
F
(
3
)
F(2)F(3)
F(2)F(3) Sure Calculation
F
(
4
)
F(4)
F(4) ,
⋯
\cdots
⋯ , according to
F
(
n
−
2
)
,
F
(
n
−
1
)
F(n-2) , F(n-1)
F(n−2),F(n−1) You can calculate
F
(
n
)
F(n)
F(n) ;
2 . Write the characteristic equation of Fibonacci sequence and solve the characteristic root :
Recurrence equation :
F
(
n
)
=
F
(
n
−
1
)
+
F
(
n
−
2
)
F(n) = F(n-1) + F(n-2)
F(n)=F(n−1)+F(n−2)
( 1 ) The standard form of recurrence equation :
F
(
n
)
−
F
(
n
−
1
)
−
F
(
n
−
2
)
=
0
F(n) - F(n-1) - F(n-2) = 0
F(n)−F(n−1)−F(n−2)=0
( 2 ) Recursive equation writing :
① First determine the number of terms of the characteristic equation : The same number of terms as the recursive equation ,
3
3
3 term ;
② In determining the characteristic equation
x
x
x Power of power : from
3
−
1
=
2
3-1=2
3−1=2 To
0
0
0 ;
③ Write a recurrence equation without coefficients :
x
2
+
x
1
+
x
0
=
0
x^2 + x^1 + x^0 = 0
x2+x1+x0=0
④ Filling factor : Then the characteristic equation without coefficients
x
2
+
x
1
+
x
0
=
0
x^2 + x^1 + x^0 = 0
x2+x1+x0=0 And
F
(
n
)
−
F
(
n
−
1
)
−
F
(
n
−
2
)
=
0
F(n) - F(n-1) - F(n-2) = 0
F(n)−F(n−1)−F(n−2)=0 The coefficients of corresponding bits are filled into the characteristic equation :
x
2
x^2
x2 The coefficient before Corresponding
F
(
n
)
F(n)
F(n) Coefficient before item
1
1
1 ;
x
1
x^1
x1 The coefficient before Corresponding
F
(
n
−
1
)
F(n-1)
F(n−1) Coefficient before item
−
1
-1
−1 ;
x
0
x^0
x0 The coefficient before Corresponding
F
(
n
−
2
)
F(n-2)
F(n−2) Coefficient before item
−
1
-1
−1 ;
Then the final The characteristic equation is
1
x
2
+
(
−
1
)
x
1
+
(
−
1
)
x
0
=
0
1 x^2 + (-1)x^1 + (-1)x^0 = 0
1x2+(−1)x1+(−1)x0=0 , It is reduced to :
x
2
−
x
−
1
=
0
x^2 - x - 1 = 0
x2−x−1=0
The characteristic root of the characteristic equation is : The solution of the above equation is the characteristic root , Generally, it is a quadratic equation with one variable ;
x
=
1
±
5
2
x = \cfrac{1 \pm \sqrt{5}}{2}
x=21±5
Reference resources : Univariate quadratic equation form
a
x
2
+
b
x
+
c
=
0
ax^2 + bx + c = 0
ax2+bx+c=0
The solution is :x
=
−
b
±
b
2
−
4
a
c
2
a
x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2a−b±b2−4ac
3 . Write the general solution of Fibonacci sequence :
The characteristic root of Fibonacci series recurrence equation is :
1
±
5
2
\cfrac{1 \pm \sqrt{5}}{2}
21±5 ;
q
1
=
1
+
5
2
q_1 = \cfrac{1 + \sqrt{5}}{2}
q1=21+5 ,
q
2
=
1
−
5
2
q_2 =\cfrac{1 - \sqrt{5}}{2}
q2=21−5
The general solution is in the form of
F
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
F(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
F(n)=c1q1n+c2q2n+⋯+ckqkn
Set feature root
q
1
,
q
2
q_1 , q_2
q1,q2 After substituting the above general solution form, it becomes :
F
(
n
)
=
c
1
(
1
+
5
2
)
n
+
c
2
(
1
−
5
2
)
n
F(n) = c_1 ( \cfrac{1 + \sqrt{5}}{2} ) ^n + c_2 ( \cfrac{1 - \sqrt{5}}{2} ) ^n
F(n)=c1(21+5)n+c2(21−5)n
4 . Substitute the initial value of the recurrence equation into general solution , Solve the constants in the general solution :
Fibonacci sequence Initial value of recurrence equation :
F
(
0
)
=
1
,
F
(
1
)
=
1
F(0) = 1 , F(1) = 1
F(0)=1,F(1)=1
Substitute the above initial value
F
(
0
)
=
1
,
F
(
1
)
=
1
F(0) = 1 , F(1) = 1
F(0)=1,F(1)=1 To General solution of recurrence equation
F
(
n
)
=
c
1
(
1
+
5
2
)
n
+
c
2
(
1
−
5
2
)
n
F(n) = c_1 ( \cfrac{1 + \sqrt{5}}{2} ) ^n + c_2 ( \cfrac{1 - \sqrt{5}}{2} ) ^n
F(n)=c1(21+5)n+c2(21−5)n in , The following equations are obtained :
{
c
1
(
1
+
5
2
)
0
+
c
2
(
1
−
5
2
)
0
=
F
(
0
)
=
1
c
1
(
1
+
5
2
)
1
+
c
2
(
1
−
5
2
)
1
=
F
(
1
)
=
1
\begin{cases} c_1 ( \cfrac{1 + \sqrt{5}}{2} ) ^0 + c_2 ( \cfrac{1 - \sqrt{5}}{2} ) ^0 = F(0) = 1 \\\\ c_1 ( \cfrac{1 + \sqrt{5}}{2} ) ^1 + c_2 ( \cfrac{1 - \sqrt{5}}{2} ) ^1 = F(1) = 1 \end{cases}
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧c1(21+5)0+c2(21−5)0=F(0)=1c1(21+5)1+c2(21−5)1=F(1)=1
After simplification, we get :
{
c
1
+
c
2
=
1
c
1
(
1
+
5
2
)
+
c
2
(
1
−
5
2
)
=
1
\begin{cases} c_1 + c_2 = 1 \\\\ c_1 ( \cfrac{1 + \sqrt{5}}{2} ) + c_2 ( \cfrac{1 - \sqrt{5}}{2} ) = 1 \end{cases}
⎩⎪⎪⎨⎪⎪⎧c1+c2=1c1(21+5)+c2(21−5)=1
Solve the above equations :
c
1
=
1
5
1
+
5
2
,
c
2
=
−
1
5
1
−
5
2
c_1 =\cfrac{1}{\sqrt{5}} \cfrac{1 + \sqrt{5}}{2}, \ \ c_2 =-\cfrac{1}{\sqrt{5}} \cfrac{1 - \sqrt{5}}{2}
c1=5121+5, c2=−5121−5
Will constant
c
1
=
1
5
1
+
5
2
,
c
2
=
−
1
5
1
−
5
2
c_1 =\cfrac{1}{\sqrt{5}} \cfrac{1 + \sqrt{5}}{2}, \ \ c_2 =-\cfrac{1}{\sqrt{5}} \cfrac{1 - \sqrt{5}}{2}
c1=5121+5, c2=−5121−5 Substitute into the general solution
F
(
n
)
=
c
1
(
1
+
5
2
)
n
+
c
2
(
1
−
5
2
)
n
F(n) = c_1 ( \cfrac{1 + \sqrt{5}}{2} ) ^n + c_2 ( \cfrac{1 - \sqrt{5}}{2} ) ^n
F(n)=c1(21+5)n+c2(21−5)n in , You can get a general solution :
F
(
n
)
=
1
5
1
+
5
2
(
1
+
5
2
)
n
−
1
5
1
−
5
2
(
1
−
5
2
)
n
F(n) = \cfrac{1}{\sqrt{5}} \cfrac{1 + \sqrt{5}}{2} ( \cfrac{1 + \sqrt{5}}{2} ) ^n - \cfrac{1}{\sqrt{5}} \cfrac{1 - \sqrt{5}}{2} ( \cfrac{1 - \sqrt{5}}{2} ) ^n
F(n)=5121+5(21+5)n−5121−5(21−5)n
It is reduced to :
F
(
n
)
=
1
5
(
1
+
5
2
)
n
+
1
−
1
5
(
1
−
5
2
)
n
+
1
F(n) = \cfrac{1}{\sqrt{5}}( \cfrac{1 + \sqrt{5}}{2} ) ^{n+1} - \cfrac{1}{\sqrt{5}} ( \cfrac{1 - \sqrt{5}}{2} ) ^{n+1}
F(n)=51(21+5)n+1−51(21−5)n+1
Two 、 Complete process of solving recursive equations without multiple roots
Complete process of solving recursive equations without multiple roots :
- 1 . Write the characteristic equation :
- ( 1 ) The standard form of recurrence equation : Write the recurrence equation Standard form , All items are to the left of the equal sign , On the right is
0
0
0 ;
- ( 2 ) Number of terms of characteristic equation : determine Number of terms of characteristic equation , And The recurrence equation has the same number of terms ;
- ( 3 ) The characteristic equation is sub idempotent : The highest power is Number of terms of characteristic equation
−
1
-1
0
0
0 ;
−1 , Lowest power
- ( 4 ) Write There is no coefficient The characteristic equation of ;
- ( 5 ) The coefficients of the recursive equation will be deduced bit by bit Copy Into the characteristic equation ;
- ( 1 ) The standard form of recurrence equation : Write the recurrence equation Standard form , All items are to the left of the equal sign , On the right is
- 2 . Solution characteristic root : take The eigenvalue of the characteristic equation is solved ,
x
=
−
b
±
b
2
−
4
a
c
2
a
x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2a−b±b2−4ac
- 3 . Construct the general solution of recurrence equation : structure
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Linear combination of forms , The linear combination is the solution of the recursive equation ;
- 4 . Find the constant in the general solution : Substitute the initial value of the recursive equation into the general solution , obtain
k
k
k individual
k
k
k Finite element equations , By solving the equations , Get the constant in the general solution ;
- ( 1 ) The constant is substituted into the general solution : Get the final solution of the recursive equation ;
Recurrence equation -> Characteristic equation -> Characteristic root -> general solution -> Substitute the initial value to find the general solution constant
边栏推荐
- How to judge the region of an IP through C?
- [combinatorics] recursive equation (constant coefficient linear homogeneous recursive equation | constant coefficient, linear, homogeneous concept description | constant coefficient linear homogeneous
- visual studio “通常每个套接字地址(协议/网络地址/端口)只允许使用一次“
- What kind of material is 14Cr1MoR? Analysis of chemical composition and mechanical properties of 14Cr1MoR
- What is your income level in the country?
- Build your own website (23)
- 简单配置PostFix服务器
- ANOVA example
- One brush 147-force deduction hot question-4 find the median of two positive arrays (H)
- How do large consumer enterprises make digital transformation?
猜你喜欢

2022.02.14_ Daily question leetcode five hundred and forty

Leetcode: lucky number in matrix

CC2530 common registers for port interrupts

网络安全web渗透技术

静态程序分析(一)—— 大纲思维导图与内容介绍

What is your income level in the country?

What is the material of 13mnnimor? 13mnnimor steel plate for medium and low temperature pressure vessels

Pools de Threads: les composants les plus courants et les plus sujets aux erreurs du Code d'affaires

Why is WPA3 security of enterprise business so important?

Depth first search of graph
随机推荐
Why is WPA3 security of enterprise business so important?
免费数据 | 新库上线 | CnOpenData中国保险中介机构网点全集数据
浅谈拉格朗日插值及其应用
Overview of satellite navigation system
Thread pool: the most common and error prone component of business code
SSH连接远程主机等待时间过长的解决方法
Squid service startup script
[mathematical logic] equivalent calculus and reasoning calculus of propositional logic (propositional logic | equivalent calculus | principal conjunctive (disjunctive) paradigm | reasoning calculus)**
Redis: operation commands for list type data
Leetcode: lucky number in matrix
New library online | cnopendata China bird watching record data
Fast Ethernet and Gigabit Ethernet: what's the difference?
基于主机的入侵系统IDS
LeetCode 1658. Minimum operand to reduce x to 0
深入理解 SQL 中的 Grouping Sets 语句
Javescript variable declaration -- VaR, let, const
[combinatorics] recursive equation (constant coefficient linear homogeneous recursive equation | constant coefficient, linear, homogeneous concept description | constant coefficient linear homogeneous
Capacités nécessaires à l'analyse des données
27. Input 3 integers and output them in descending order. Pointer method is required.
C language string practice