当前位置:网站首页>[combinatorics] generating function (positive integer splitting | basic model of positive integer splitting | disordered splitting with restrictions)
[combinatorics] generating function (positive integer splitting | basic model of positive integer splitting | disordered splitting with restrictions)
2022-07-03 18:07:00 【Programmer community】
List of articles
- One 、 Basic model of positive integer splitting
- Two 、 Disorderly splitting with restrictions
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
One 、 Basic model of positive integer splitting
Unordered split basic model :
take Positive integer
N
N
N Unordered split into positive integers ,
a
1
,
a
2
,
⋯
,
a
n
a_1, a_2, \cdots , a_n
a1,a2,⋯,an It is a split
n
n
n Number ,
The split is unordered , Split above
n
n
n The number of numbers may be different ,
hypothesis
a
1
a_1
a1 Yes
x
1
x_1
x1 individual ,
a
2
a_2
a2 Yes
x
2
x_2
x2 individual ,
⋯
\cdots
⋯ ,
a
n
a_n
an Yes
x
n
x_n
xn individual , Then there is the following equation :
a
1
x
1
+
a
2
x
2
+
⋯
+
a
n
x
n
=
N
a_1x_1 + a_2x_2 + \cdots + a_nx_n = N
a1x1+a2x2+⋯+anxn=N
This form can be used Number of nonnegative integer solutions of indefinite equation Generation function calculation of , yes With coefficients , With restrictions , Reference resources : Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
In the case of unordered splitting , A positive integer after splitting , Allow repetition and No repetition , It is two kinds of combinatorial problems ;
If No repetition , So these
x
i
x_i
xi The value of , Can only Value
0
,
1
0, 1
0,1 ; amount to With restrictions , With coefficients Of Nonnegative integer solutions of indefinite equations The situation of ;
The corresponding generating function is :
G
(
x
)
=
(
1
+
y
a
1
)
(
1
+
y
a
2
)
⋯
(
1
+
y
a
n
)
G(x) = (1+ y^{a_1}) (1+ y^{a_2}) \cdots (1+ y^{a_n})
G(x)=(1+ya1)(1+ya2)⋯(1+yan)
If Allow repetition , So these
x
i
x_i
xi The value of , Namely Natural number ; amount to With coefficients Of Nonnegative integer solutions of indefinite equations The situation of ;
The corresponding generating function is :
G
(
x
)
=
(
1
+
y
a
1
+
y
2
a
1
⋯
)
(
1
+
y
a
2
+
y
2
a
2
⋯
)
⋯
(
1
+
y
a
n
+
y
2
a
n
⋯
)
G(x) = (1+ y^{a_1}+ y^{2a_1}\cdots) (1+ y^{a_2} + y^{2a_2}\cdots) \cdots (1+ y^{a_n}+ y^{2a_n}\cdots )
G(x)=(1+ya1+y2a1⋯)(1+ya2+y2a2⋯)⋯(1+yan+y2an⋯)
or
G
(
x
)
=
1
(
1
−
y
a
1
)
(
1
−
y
a
2
)
⋯
(
1
−
y
a
n
)
G(x) =\cfrac{1}{ (1-y^{a_1}) (1-y^{a_2}) \cdots (1-y^{a_n}) }
G(x)=(1−ya1)(1−ya2)⋯(1−yan)1
Two 、 Disorderly splitting with restrictions
take Positive integer
N
N
N Unordered split into positive integers ,
a
1
,
a
2
,
⋯
,
a
n
a_1, a_2, \cdots , a_n
a1,a2,⋯,an It is a split
n
n
n Number ,
The split is unordered , Split above
n
n
n The number of numbers may be different ,
hypothesis
a
1
a_1
a1 Yes
x
1
x_1
x1 individual ,
a
2
a_2
a2 Yes
x
2
x_2
x2 individual ,
⋯
\cdots
⋯ ,
a
n
a_n
an Yes
x
n
x_n
xn individual , Then there is the following equation :
a
1
x
1
+
a
2
x
2
+
⋯
+
a
n
x
n
=
N
a_1x_1 + a_2x_2 + \cdots + a_nx_n = N
a1x1+a2x2+⋯+anxn=N
There are restrictions ,
a
i
a_i
ai The number of values
x
i
x_i
xi Value range Make some restrictions ,
l
i
≤
x
i
≤
t
i
l_i \leq x_i \leq t_i
li≤xi≤ti
This form can be used Number of nonnegative integer solutions of indefinite equation Generation function calculation of , yes With coefficients , With restrictions , Reference resources : Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
Disordered splitting under the above restricted conditions , Is complete With coefficients , With restrictions Of Nonnegative integer solutions of indefinite equations The problem of ;
边栏推荐
- Module 9 operation
- Embedded-c language-7
- [mathematical logic] equivalent calculus and reasoning calculus of predicate logic (individual word | predicate | quantifier | predicate logic formula | two basic formulas | proposition symbolization
- How to draw non overlapping bubble chart in MATLAB
- 基于人脸识别的课堂考勤系统 tkinter+openpyxl+face_recognition
- Computer graduation design PHP campus address book telephone number inquiry system
- win32:堆破坏的dump文件分析
- [combinatorics] generating function (summation property)
- [untitled]
- SSL / bio pour OpenSSL Get FD
猜你喜欢
![[enumeration] annoying frogs always step on my rice fields: (who is the most hateful? (POJ hundred practice 2812)](/img/50/f89092b492d0138304209a72ff05b4.jpg)
[enumeration] annoying frogs always step on my rice fields: (who is the most hateful? (POJ hundred practice 2812)
![[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)](/img/e6/9880e708aed42dc82c94aea002020c.jpg)
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)

Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up

Talk about the design and implementation logic of payment process

Computer graduation design PHP campus address book telephone number inquiry system

win32:堆破坏的dump文件分析

TCP congestion control details | 3 design space

As soon as we enter "remote", we will never regret, and several people will be happy and several people will be sad| Community essay solicitation

How to expand the capacity of golang slice slice

SQL injection -day16
随机推荐
SQL injection -day16
PHP MySQL inserts data
Draw some simple graphics with MFC
Research on Swift
Talk about the design and implementation logic of payment process
Kotlin的協程:上下文
win32:堆破坏的dump文件分析
An academic paper sharing and approval system based on PHP for computer graduation design
Unsafe类的使用
MySQL grouping query
Deops入门
[教程]在 CoreOS 上构建你的第一个应用
[combinatorics] generating function (example of using generating function to solve the number of solutions of indefinite equation)
SDNUOJ1015
TCP congestion control details | 3 design space
This diversion
How to draw non overlapping bubble chart in MATLAB
Image 24 bits de profondeur à 8 bits de profondeur
ES6类的继承
Win32: dump file analysis of heap corruption