当前位置:网站首页>[combinatorics] recursive equation (definition of general solution | structure theorem of general solution of recursive equation without multiple roots)
[combinatorics] recursive equation (definition of general solution | structure theorem of general solution of recursive equation without multiple roots)
2022-07-03 16:58:00 【Programmer community】
List of articles
- One 、 General definition
- Two 、 Structure theorem of general solution of recursive equation without multiple roots
One 、 General definition
The form of the solution of the recursive equation : Satisfy
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0 All recursive equations of the formula , All have
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Formal solution ;
Now let's discuss what we got before The form of the solution
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Whether the common pattern of all solutions is summarized ; Whether all items in the sequence follow this pattern ;
If there are some different initial values , Do not follow the above pattern , Then the solution is Can not act as be-all This family Recurrence equation The general format of the solution of ;
Definition of general solution of recursive equation :
If the recurrence equation , Each solution
h
(
n
)
h(n)
h(n) There is a set of constants
c
1
′
,
c
2
′
,
⋯
,
c
k
′
c_1' , c_2' , \cdots , c_k'
c1′,c2′,⋯,ck′ ,
bring
h
(
n
)
=
c
1
′
q
1
n
+
c
2
′
q
2
n
+
⋯
+
c
k
′
q
k
n
h(n) = c_1'q_1^n + c_2'q_2^n + \cdots + c_k'q_k^n
h(n)=c1′q1n+c2′q2n+⋯+ck′qkn establish ,
said
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn yes Recursive equation general solution ;
analysis :
The number of solutions of recurrence equation : How many solutions do recursive equations have , Solve the characteristic equation to the characteristic root , Number of characteristic roots , Is the number of solutions of the recursive equation ;
Constant determination :
h
(
n
)
h(n)
h(n) It's the th of the sequence
n
n
n term ,
h
(
n
)
h(n)
h(n) Whether it can be expressed as
c
1
′
q
1
n
+
c
2
′
q
2
n
+
⋯
+
c
k
′
q
k
n
c_1'q_1^n + c_2'q_2^n + \cdots + c_k'q_k^n
c1′q1n+c2′q2n+⋯+ck′qkn Format , Find a set of constants
c
1
′
,
c
2
′
,
⋯
,
c
k
′
c_1' , c_2' , \cdots , c_k'
c1′,c2′,⋯,ck′ , Let the format of the above solution be determined , These constants are confirmed by initial values ;
Two 、 Structure theorem of general solution of recursive equation without multiple roots
Structure theorem of general solution of recursive equation without multiple roots :
If
q
1
,
q
2
,
⋯
,
q
k
q_1, q_2, \cdots , q_k
q1,q2,⋯,qk yes Recurrence equation It's not equal Of Characteristic root ,
be
H
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
H(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
H(n)=c1q1n+c2q2n+⋯+ckqkn For general solution ;
Casually in recursive equations , Take out an equation , The solution must be
H
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
H(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
H(n)=c1q1n+c2q2n+⋯+ckqkn Format , nothing but Different initial values , Corresponding to different
c
1
,
c
2
,
⋯
,
c
k
c_1, c_2, \cdots , c_k
c1,c2,⋯,ck constant ;
Prove the above theorem :
H
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
H(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
H(n)=c1q1n+c2q2n+⋯+ckqkn Is the solution of a recursive equation , From the theorem that has been proved before :
q
q
⇔
\Leftrightarrow
⇔
q
n
q^n
qn Is the solution of a recursive equation
q Is the characteristic root of the characteristic equation
h
1
(
n
)
h_1(n)
h1(n) and
h
2
(
n
)
h_2(n)
h2(n) Are the solutions of the same recursive equation ,
c
1
,
c
2
c_1 , c_2
c1,c2 It's an arbitrary constant , Linear combination of two solutions
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) , This linear combination is also the solution of the recursive equation ;
It is proved that any solution can be expressed in the format of general solution ;
Assume
h
(
n
)
h(n)
h(n) Is any solution ,
The recurrence equation has
k
k
k The initial values are as follows :
h
(
0
)
=
b
0
h(0) = b_0
h(0)=b0
h
(
1
)
=
b
1
h(1) = b_1
h(1)=b1
h
(
2
)
=
b
2
h(2) = b_2
h(2)=b2
⋮
\ \ \ \ \ \ \ \ \ \vdots
⋮
h
(
k
−
1
)
=
b
k
−
1
h(k-1) = b_{k-1}
h(k−1)=bk−1
take
k
k
k An initial value , Substitute the above general solution format
H
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
H(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
H(n)=c1q1n+c2q2n+⋯+ckqkn in , The following equations are obtained :
{
c
1
′
+
c
2
′
+
⋯
+
c
k
′
=
b
0
c
1
′
q
1
+
c
2
′
q
2
+
⋯
+
c
k
′
q
k
=
b
1
⋮
c
1
′
q
1
k
−
1
+
c
2
′
q
2
k
−
1
+
⋯
+
c
k
′
q
k
k
−
1
=
b
k
−
1
\begin{cases} c_1' + c_2' + \cdots + c_k' = b_0 \\\\ c_1'q_1 + c_2'q_2 + \cdots + c_k'q_k = b_1 \\\\ \ \ \ \ \ \vdots \\\\ c_1' q_1^{k-1}+ c_2' q_2^{k-1}+ \cdots + c_k' q_k^{k-1}= b^{k-1} \end{cases}
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧c1′+c2′+⋯+ck′=b0c1′q1+c2′q2+⋯+ck′qk=b1 ⋮c1′q1k−1+c2′q2k−1+⋯+ck′qkk−1=bk−1
Whether the above equations can uniquely determine a group
c
1
,
c
2
,
⋯
,
c
k
c_1, c_2, \cdots , c_k
c1,c2,⋯,ck constant , If it can be explained that the solution is the general solution of the recursive equation , If not , Then the solution is not the general solution of the recursive equation ;
Put the above
c
1
,
c
2
,
⋯
,
c
k
c_1, c_2, \cdots , c_k
c1,c2,⋯,ck regard as
k
k
k An unknown number , also There are
k
k
k An equation , The condition for the existence and uniqueness of the solution of this system of equations is :
Coefficient determinant It's not equal to
0
0
0 ,
The symbol is :
∏
1
≤
i
<
j
≤
k
(
q
i
−
q
k
)
≠
0
\prod\limits_{1 \leq i < j \leq k} ( q_i - q_k ) \not= 0
1≤i<j≤k∏(qi−qk)=0
A word description : The coefficient determinant is all coefficient
q
1
,
q
2
,
⋯
,
q
k
−
1
q_1, q_2, \cdots , q_{k-1}
q1,q2,⋯,qk−1 Of The product of two subtractions is not
0
0
0 , namely
q
1
,
q
2
,
⋯
,
q
k
−
1
q_1, q_2, \cdots , q_{k-1}
q1,q2,⋯,qk−1 in There is no equality between two ;
边栏推荐
- LeetCode 1656. Design ordered flow
- One brush 145 force deduction hot question-2 sum of two numbers (m)
- One brush 144 force deduction hot question-1 sum of two numbers (E)
- 聊聊接口优化的几个方法
- [combinatorial mathematics] recursive equation (example of recursive equation 2 Hanoi Tower | example of recursive equation 3 insertion sequencing)
- What kind of material is 14Cr1MoR? Analysis of chemical composition and mechanical properties of 14Cr1MoR
- mysql用户管理
- 27. Input 3 integers and output them in descending order. Pointer method is required.
- One brush 148 force deduction hot question-5 longest palindrome substring (m)
- CC2530 common registers for ADC single channel conversion
猜你喜欢

Simulink oscilloscope data is imported into Matlab and drawn

Kotlin学习快速入门(7)——扩展的妙用

Atom QT 16_ audiorecorder

The most complete postman interface test tutorial in the whole network, API interface test

关于学习Qt编程的好书精品推荐

Thread pool: the most common and error prone component of business code

Talk about several methods of interface optimization

人生还在迷茫?也许这些订阅号里有你需要的答案!

线程池:业务代码最常用也最容易犯错的组件

什么是质押池,如何进行质押呢?
随机推荐
Daily code 300 lines learning notes day 10
13mnnimo5-4 German standard steel plate 13MnNiMo54 boiler steel 13MnNiMo54 chemical properties
Difference between JSON and bson
建立自己的网站(23)
[try to hack] active detection and concealment technology
MySQL user management
CC2530 common registers for port initialization
Résolution de l'instance d'assemblage - - affichage à l'écran en mode réel
One brush 146 force buckle hot question-3 longest substring without repeated characters (m)
【Try to Hack】主动侦查隐藏技术
There are several APIs of airtest and poco that are easy to use wrong in "super". See if you have encountered them
【剑指 Offer】58 - I. 翻转单词顺序
SSH连接远程主机等待时间过长的解决方法
What material is sa537cl1? Sa537cl1 corresponds to the national standard material
[combinatorics] recursive equation (example 1 of recursive equation | list recursive equation)
What kind of material is 14Cr1MoR? Analysis of chemical composition and mechanical properties of 14Cr1MoR
Central South University | through exploration and understanding: find interpretable features with deep reinforcement learning
CC2530 common registers
[2. Basics of Delphi grammar] 2 Object Pascal data type
Kotlin学习快速入门(7)——扩展的妙用