当前位置:网站首页>[combinatorics] recursive equation (definition of general solution | structure theorem of general solution of recursive equation without multiple roots)
[combinatorics] recursive equation (definition of general solution | structure theorem of general solution of recursive equation without multiple roots)
2022-07-03 16:58:00 【Programmer community】
List of articles
- One 、 General definition
- Two 、 Structure theorem of general solution of recursive equation without multiple roots
One 、 General definition
The form of the solution of the recursive equation : Satisfy
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0 All recursive equations of the formula , All have
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Formal solution ;
Now let's discuss what we got before The form of the solution
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Whether the common pattern of all solutions is summarized ; Whether all items in the sequence follow this pattern ;
If there are some different initial values , Do not follow the above pattern , Then the solution is Can not act as be-all This family Recurrence equation The general format of the solution of ;
Definition of general solution of recursive equation :
If the recurrence equation , Each solution
h
(
n
)
h(n)
h(n) There is a set of constants
c
1
′
,
c
2
′
,
⋯
,
c
k
′
c_1' , c_2' , \cdots , c_k'
c1′,c2′,⋯,ck′ ,
bring
h
(
n
)
=
c
1
′
q
1
n
+
c
2
′
q
2
n
+
⋯
+
c
k
′
q
k
n
h(n) = c_1'q_1^n + c_2'q_2^n + \cdots + c_k'q_k^n
h(n)=c1′q1n+c2′q2n+⋯+ck′qkn establish ,
said
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn yes Recursive equation general solution ;
analysis :
The number of solutions of recurrence equation : How many solutions do recursive equations have , Solve the characteristic equation to the characteristic root , Number of characteristic roots , Is the number of solutions of the recursive equation ;
Constant determination :
h
(
n
)
h(n)
h(n) It's the th of the sequence
n
n
n term ,
h
(
n
)
h(n)
h(n) Whether it can be expressed as
c
1
′
q
1
n
+
c
2
′
q
2
n
+
⋯
+
c
k
′
q
k
n
c_1'q_1^n + c_2'q_2^n + \cdots + c_k'q_k^n
c1′q1n+c2′q2n+⋯+ck′qkn Format , Find a set of constants
c
1
′
,
c
2
′
,
⋯
,
c
k
′
c_1' , c_2' , \cdots , c_k'
c1′,c2′,⋯,ck′ , Let the format of the above solution be determined , These constants are confirmed by initial values ;
Two 、 Structure theorem of general solution of recursive equation without multiple roots
Structure theorem of general solution of recursive equation without multiple roots :
If
q
1
,
q
2
,
⋯
,
q
k
q_1, q_2, \cdots , q_k
q1,q2,⋯,qk yes Recurrence equation It's not equal Of Characteristic root ,
be
H
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
H(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
H(n)=c1q1n+c2q2n+⋯+ckqkn For general solution ;
Casually in recursive equations , Take out an equation , The solution must be
H
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
H(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
H(n)=c1q1n+c2q2n+⋯+ckqkn Format , nothing but Different initial values , Corresponding to different
c
1
,
c
2
,
⋯
,
c
k
c_1, c_2, \cdots , c_k
c1,c2,⋯,ck constant ;
Prove the above theorem :
H
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
H(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
H(n)=c1q1n+c2q2n+⋯+ckqkn Is the solution of a recursive equation , From the theorem that has been proved before :
q
q
⇔
\Leftrightarrow
⇔
q
n
q^n
qn Is the solution of a recursive equation
q Is the characteristic root of the characteristic equation
h
1
(
n
)
h_1(n)
h1(n) and
h
2
(
n
)
h_2(n)
h2(n) Are the solutions of the same recursive equation ,
c
1
,
c
2
c_1 , c_2
c1,c2 It's an arbitrary constant , Linear combination of two solutions
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) , This linear combination is also the solution of the recursive equation ;
It is proved that any solution can be expressed in the format of general solution ;
Assume
h
(
n
)
h(n)
h(n) Is any solution ,
The recurrence equation has
k
k
k The initial values are as follows :
h
(
0
)
=
b
0
h(0) = b_0
h(0)=b0
h
(
1
)
=
b
1
h(1) = b_1
h(1)=b1
h
(
2
)
=
b
2
h(2) = b_2
h(2)=b2
⋮
\ \ \ \ \ \ \ \ \ \vdots
⋮
h
(
k
−
1
)
=
b
k
−
1
h(k-1) = b_{k-1}
h(k−1)=bk−1
take
k
k
k An initial value , Substitute the above general solution format
H
(
n
)
=
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
H(n) = c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
H(n)=c1q1n+c2q2n+⋯+ckqkn in , The following equations are obtained :
{
c
1
′
+
c
2
′
+
⋯
+
c
k
′
=
b
0
c
1
′
q
1
+
c
2
′
q
2
+
⋯
+
c
k
′
q
k
=
b
1
⋮
c
1
′
q
1
k
−
1
+
c
2
′
q
2
k
−
1
+
⋯
+
c
k
′
q
k
k
−
1
=
b
k
−
1
\begin{cases} c_1' + c_2' + \cdots + c_k' = b_0 \\\\ c_1'q_1 + c_2'q_2 + \cdots + c_k'q_k = b_1 \\\\ \ \ \ \ \ \vdots \\\\ c_1' q_1^{k-1}+ c_2' q_2^{k-1}+ \cdots + c_k' q_k^{k-1}= b^{k-1} \end{cases}
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧c1′+c2′+⋯+ck′=b0c1′q1+c2′q2+⋯+ck′qk=b1 ⋮c1′q1k−1+c2′q2k−1+⋯+ck′qkk−1=bk−1
Whether the above equations can uniquely determine a group
c
1
,
c
2
,
⋯
,
c
k
c_1, c_2, \cdots , c_k
c1,c2,⋯,ck constant , If it can be explained that the solution is the general solution of the recursive equation , If not , Then the solution is not the general solution of the recursive equation ;
Put the above
c
1
,
c
2
,
⋯
,
c
k
c_1, c_2, \cdots , c_k
c1,c2,⋯,ck regard as
k
k
k An unknown number , also There are
k
k
k An equation , The condition for the existence and uniqueness of the solution of this system of equations is :
Coefficient determinant It's not equal to
0
0
0 ,
The symbol is :
∏
1
≤
i
<
j
≤
k
(
q
i
−
q
k
)
≠
0
\prod\limits_{1 \leq i < j \leq k} ( q_i - q_k ) \not= 0
1≤i<j≤k∏(qi−qk)=0
A word description : The coefficient determinant is all coefficient
q
1
,
q
2
,
⋯
,
q
k
−
1
q_1, q_2, \cdots , q_{k-1}
q1,q2,⋯,qk−1 Of The product of two subtractions is not
0
0
0 , namely
q
1
,
q
2
,
⋯
,
q
k
−
1
q_1, q_2, \cdots , q_{k-1}
q1,q2,⋯,qk−1 in There is no equality between two ;
边栏推荐
- Résolution de l'instance d'assemblage - - affichage à l'écran en mode réel
- 數據分析必備的能力
- One brush 144 force deduction hot question-1 sum of two numbers (E)
- One brush 148 force deduction hot question-5 longest palindrome substring (m)
- What material is sa537cl1? Sa537cl1 corresponds to the national standard material
- Define a structure fraction to represent a fraction, which is used to represent fractions such as 2/3 and 5/6
- 大变局!全国房价,跌破万元大关
- 29:第三章:开发通行证服务:12:开发【获得用户账户信息,接口】;(使用VO类包装查到的数据,以符合接口对返回数据的要求)(在多处都会用到的逻辑,在Controller中可以把其抽成一个共用方法)
- What material is sa537cl2? Analysis of mechanical properties of American standard container plate
- C language modifies files by line
猜你喜欢
arduino-esp32:LVGL项目(一)整体框架
Mysql database -dql
Build your own website (23)
Aike AI frontier promotion (7.3)
Data driving of appium framework for mobile terminal automated testing
To resist 7-Zip, list "three sins"? Netizen: "is the third key?"
NLP four paradigms: paradigm 1: fully supervised learning in the era of non neural networks (Feature Engineering); Paradigm 2: fully supervised learning based on neural network (Architecture Engineeri
Why is WPA3 security of enterprise business so important?
Zebras are recognized as dogs, and Stanford found the reason why AI made mistakes
Pools de Threads: les composants les plus courants et les plus sujets aux erreurs du Code d'affaires
随机推荐
MySQL Basics
Visual studio "usually, each socket address (Protocol / network address / port) can only be used once“
线程池:业务代码最常用也最容易犯错的组件
CC2530 common registers for ADC single channel conversion
One brush 148 force deduction hot question-5 longest palindrome substring (m)
NLP四范式:范式一:非神经网络时代的完全监督学习(特征工程);范式二:基于神经网络的完全监督学习(架构工程);范式三:预训练,精调范式(目标工程);范式四:预训练,提示,预测范式(Prompt工程)
Kindeditor editor upload image ultra wide automatic compression -php code
远程办公之如何推进跨部门项目协作 | 社区征文
Interpretation of several important concepts of satellite antenna
汇编实例解析--实模式下屏幕显示
C语言字符串练习
大消费企业怎样做数字化转型?
Acwing game 58
[combinatorics] non descending path problem (number of non descending paths with constraints)
[2. Basics of Delphi grammar] 1 Identifiers and reserved words
比亚迪、长城混动市场再“聚首”
Processing strategy of message queue message loss and repeated message sending
[combinatorics] recursive equation (example 1 of recursive equation | list recursive equation)
图之深度优先搜索
Mysql database DDL and DML