当前位置:网站首页>Implementation of binary search tree
Implementation of binary search tree
2022-07-07 03:56:00 【Wuhu kaichong ~】
Be careful : This article adopts c++, stay vs2022 Bottom debugging
Catalog
Binary search tree node implementation
Property setting of binary search tree
Deletion of binary search tree
Of binary search trees Find function
Middle order traversal of binary search tree
Binary search tree concept
Binary search tree is also called binary sort tree , It could be an empty tree , Or a binary tree with the following properties :
If its left subtree is not empty , Then the values of all nodes on the left subtree are smaller than the values of the root nodes
If its right subtree is not empty , Then the value of all nodes on the right subtree is greater than the value of the root node
Its left and right subtrees are also binary search trees
To put it bluntly , It is a sort tree , Its left sub tree is smaller than it , The right subtree is bigger than it , So it happens to be an ordered sequence after the sequence traversal
Binary search tree node implementation
Here is the node implemented by the template method , Each value of a node is a key value pair
template<class K, class V>
struct BSTreeNode {
BSTreeNode(const K& key = K(), const V& value = V())
:_val(key, value)
,_left(nullptr)
,_right(nullptr)
{}
BSTreeNode* _left;
BSTreeNode* _right;
pair<K, V> _val;
};Property setting of binary search tree
typedef BSTreeNode<K, V> Node;
Node* _root = nullptr;Binary search tree insertion
bool Insert(const K& key, const V& value) {
Node* cur = new Node(key, value);
// Empty tree
if (_root == nullptr) {
_root = cur;
return true;
}
// Non empty
// look for cur Insertion position
Node* prev = cur; // Save it cur Value
cur = _root;
Node* parent = _root;
while (cur) {
if (key > parent->_val.first) {
parent = cur;
cur = cur->_right;
}
else if (key < parent->_val.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
// Found the location of the parent node , Insert
cur = prev;
if (cur->_val.first > parent->_val.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
return true;
}Deletion of binary search tree
The deletion of binary search tree can be divided into four cases , The node to be deleted is a leaf node , Only the left child , Only the right child , Both the left and right children have ,
among , If the node to be deleted is a leaf node, it can be merged with only the left child or only the right child , Then there are only three cases ,
Only the left child and only the right child are easy to say , Just pass on its children to their parents , The difficulty is that both left and right children have , Then you can only find a replacement node , This replacement node is usually the largest in its left subtree ( The most right ) Or the smallest node in the right subtree ( Leftmost left ) That node of , Put the value of that node in the node to be deleted , Then delete that node
bool Erase(const K& key) {
if (_root == nullptr) {
return false;
}
// Find node
Node* delnode = _root;
Node* parent = nullptr;
while (delnode) {
if (delnode->_val.first == key) {
break;
}
else if (delnode->_val.first > key) {
parent = delnode;
delnode = delnode->_left;
}
else {
parent = delnode;
delnode = delnode->_right;
}
}
// I didn't find it
if (delnode == nullptr) {
return false;
}
// There are only right subtrees or leaf nodes
if (delnode->_left == nullptr) {
if (parent == nullptr) {
_root = delnode->_right;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_right;
delete delnode;
}
else {
parent->_right = delnode->_right;
delete delnode;
}
}
}
// Only the left sub tree
else if (delnode->_right == nullptr) {
// If delnode yes _root node
if (parent == nullptr) {
_root = delnode->_left;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_left;
delete delnode;
}
else {
parent->_right = delnode->_left;
delete delnode;
}
}
}
// There are... In both the left and right subtrees
else {
Node* firstinorder = delnode->_right;
parent = delnode;
// It's not easy to delete directly , Find a replacement node
while (firstinorder->_left) {
parent = firstinorder;
firstinorder = firstinorder->_left;
}
// Replace the node val Assign a value to delnode, Then delete the replacement node
delnode->_val = firstinorder->_val;
if (firstinorder == parent->_left) {
parent->_left = firstinorder->_right;
}
else {
parent->_right = firstinorder->_right;
}
delete firstinorder;
return true;
}
}Of binary search trees Find function
Node* Find(const K& key) {
return _Find(_root, key);
}
Node* _Find(const Node* root, const K& key) {
if (key == root->_val.first) {
return root;
}
Node* cur = _Find(root->_left, key);
if (cur) {
return cur;
}
cur = _Find(root->_right, key);
if (cur) {
return cur;
}
return nullptr;
}Middle order traversal of binary search tree
void InOrder() {
_InOrder(_root);
}
void _InOrder(Node* root) {
if (root == nullptr) {
return;
}
cout << root->_val.first << ":" << root->_val.second << endl;
_InOrder(root->_left);
_InOrder(root->_right);
}The overall code
#include <utility>
using namespace std;
template<class K, class V>
struct BSTreeNode {
BSTreeNode(const K& key = K(), const V& value = V())
:_val(key, value)
,_left(nullptr)
,_right(nullptr)
{}
BSTreeNode* _left;
BSTreeNode* _right;
pair<K, V> _val;
};
// Appointment ,value There's not the same
template<class K, class V>
class BSTree
{
typedef BSTreeNode<K, V> Node;
public:
bool Insert(const K& key, const V& value) {
Node* cur = new Node(key, value);
// Empty tree
if (_root == nullptr) {
_root = cur;
return true;
}
// Non empty
// look for cur Change the insertion position
Node* prev = cur;
cur = _root;
Node* parent = _root;
while (cur) {
if (key > parent->_val.first) {
parent = cur;
cur = cur->_right;
}
else if (key < parent->_val.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
cur = prev;
if (cur->_val.first > parent->_val.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
return true;
}
Node* Find(const K& key) {
return _Find(_root, key);
}
bool Erase(const K& key) {
if (_root == nullptr) {
return false;
}
// Find node
Node* delnode = _root;
Node* parent = nullptr;
while (delnode) {
if (delnode->_val.first == key) {
break;
}
else if (delnode->_val.first > key) {
parent = delnode;
delnode = delnode->_left;
}
else {
parent = delnode;
delnode = delnode->_right;
}
}
// I didn't find it
if (delnode == nullptr) {
return false;
}
// There are only right subtrees or leaf nodes
if (delnode->_left == nullptr) {
if (parent == nullptr) {
_root = delnode->_right;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_right;
delete delnode;
}
else {
parent->_right = delnode->_right;
delete delnode;
}
}
}
// Only the left sub tree
else if (delnode->_right == nullptr) {
if (parent == nullptr) {
_root = delnode->_left;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_left;
delete delnode;
}
else {
parent->_right = delnode->_left;
delete delnode;
}
}
}
// There are... In both the left and right subtrees
else {
Node* firstinorder = delnode->_right;
parent = delnode;
// It's not easy to delete directly , Find a replacement node
while (firstinorder->_left) {
parent = firstinorder;
firstinorder = firstinorder->_left;
}
// Replace the node val Assign a value to delnode, Then delete the replacement node
delnode->_val = firstinorder->_val;
if (firstinorder == parent->_left) {
parent->_left = firstinorder->_right;
}
else {
parent->_right = firstinorder->_right;
}
delete firstinorder;
return true;
}
}
void InOrder() {
_InOrder(_root);
}
private:
void _InOrder(Node* root) {
if (root == nullptr) {
return;
}
cout << root->_val.first << ":" << root->_val.second << endl;
_InOrder(root->_left);
_InOrder(root->_right);
}
Node* _Find(const Node* root, const K& key) {
if (key == root->_val.first) {
return root;
}
Node* cur = _Find(root->_left, key);
if (cur) {
return cur;
}
cur = _Find(root->_right, key);
if (cur) {
return cur;
}
return nullptr;
}
Node* _root = nullptr;
};
边栏推荐
- About Confidence Intervals
- 【开发软件】 tilipa开发者软件
- About Estimation Statistics
- 数据的存储
- 19. (ArcGIS API for JS) ArcGIS API for JS line acquisition (sketchviewmodel)
- Adaptive non European advertising retrieval system amcad
- Code quality management
- 1200.Minimum Absolute Difference
- QT item table new column name setting requirement exercise (find the number and maximum value of the array disappear)
- 枚举通用接口&枚举使用规范
猜你喜欢

ubuntu20安装redisjson记录

【mysql】mysql中行排序

哈夫曼树基本概念

Mobile measurement and depth link platform - Branch

Codeworks 5 questions per day (1700 average) - day 7

1200.Minimum Absolute Difference

如何检测mysql代码运行是否出现死锁+binlog查看

22. (ArcGIS API for JS) ArcGIS API for JS Circle Collection (sketchviewmodel)

Optimization cases of complex factor calculation: deep imbalance, buying and selling pressure index, volatility calculation
![[leetcode] 450 and 98 (deletion and verification of binary search tree)](/img/89/dd7ac0d886e6bbca5a439386c576bb.jpg)
[leetcode] 450 and 98 (deletion and verification of binary search tree)
随机推荐
Depth analysis of compilation constants, classloader classes, and system class loaders
Kalman filter-1
你心目中的数据分析 Top 1 选 Pandas 还是选 SQL?
Set static IP for raspberry pie
Class常量池与运行时常量池
21.(arcgis api for js篇)arcgis api for js矩形采集(SketchViewModel)
Allow public connections to local Ruby on Rails Development Server
海思3559万能平台搭建:RTSP实时播放的支持
Clock in during winter vacation
【开发软件】 tilipa开发者软件
【安全攻防】序列化与反序列,你了解多少?
再AD 的 界面顶部(菜单栏)创建常用的快捷图标
Introduction to opensea platform developed by NFT trading platform (I)
使用 Dumpling 备份 TiDB 集群数据到 GCS
A 股指数成分数据 API 数据接口
SSL certificate deployment
23. (ArcGIS API for JS) ArcGIS API for JS ellipse collection (sketchviewmodel)
本机mysql
Open3D 网格滤波
Index of MySQL