当前位置:网站首页>Implementation of binary search tree
Implementation of binary search tree
2022-07-07 03:56:00 【Wuhu kaichong ~】
Be careful : This article adopts c++, stay vs2022 Bottom debugging
Catalog
Binary search tree node implementation
Property setting of binary search tree
Deletion of binary search tree
Of binary search trees Find function
Middle order traversal of binary search tree
Binary search tree concept
Binary search tree is also called binary sort tree , It could be an empty tree , Or a binary tree with the following properties :
If its left subtree is not empty , Then the values of all nodes on the left subtree are smaller than the values of the root nodes
If its right subtree is not empty , Then the value of all nodes on the right subtree is greater than the value of the root node
Its left and right subtrees are also binary search trees
To put it bluntly , It is a sort tree , Its left sub tree is smaller than it , The right subtree is bigger than it , So it happens to be an ordered sequence after the sequence traversal
Binary search tree node implementation
Here is the node implemented by the template method , Each value of a node is a key value pair
template<class K, class V>
struct BSTreeNode {
BSTreeNode(const K& key = K(), const V& value = V())
:_val(key, value)
,_left(nullptr)
,_right(nullptr)
{}
BSTreeNode* _left;
BSTreeNode* _right;
pair<K, V> _val;
};
Property setting of binary search tree
typedef BSTreeNode<K, V> Node;
Node* _root = nullptr;
Binary search tree insertion
bool Insert(const K& key, const V& value) {
Node* cur = new Node(key, value);
// Empty tree
if (_root == nullptr) {
_root = cur;
return true;
}
// Non empty
// look for cur Insertion position
Node* prev = cur; // Save it cur Value
cur = _root;
Node* parent = _root;
while (cur) {
if (key > parent->_val.first) {
parent = cur;
cur = cur->_right;
}
else if (key < parent->_val.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
// Found the location of the parent node , Insert
cur = prev;
if (cur->_val.first > parent->_val.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
return true;
}
Deletion of binary search tree
The deletion of binary search tree can be divided into four cases , The node to be deleted is a leaf node , Only the left child , Only the right child , Both the left and right children have ,
among , If the node to be deleted is a leaf node, it can be merged with only the left child or only the right child , Then there are only three cases ,
Only the left child and only the right child are easy to say , Just pass on its children to their parents , The difficulty is that both left and right children have , Then you can only find a replacement node , This replacement node is usually the largest in its left subtree ( The most right ) Or the smallest node in the right subtree ( Leftmost left ) That node of , Put the value of that node in the node to be deleted , Then delete that node
bool Erase(const K& key) {
if (_root == nullptr) {
return false;
}
// Find node
Node* delnode = _root;
Node* parent = nullptr;
while (delnode) {
if (delnode->_val.first == key) {
break;
}
else if (delnode->_val.first > key) {
parent = delnode;
delnode = delnode->_left;
}
else {
parent = delnode;
delnode = delnode->_right;
}
}
// I didn't find it
if (delnode == nullptr) {
return false;
}
// There are only right subtrees or leaf nodes
if (delnode->_left == nullptr) {
if (parent == nullptr) {
_root = delnode->_right;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_right;
delete delnode;
}
else {
parent->_right = delnode->_right;
delete delnode;
}
}
}
// Only the left sub tree
else if (delnode->_right == nullptr) {
// If delnode yes _root node
if (parent == nullptr) {
_root = delnode->_left;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_left;
delete delnode;
}
else {
parent->_right = delnode->_left;
delete delnode;
}
}
}
// There are... In both the left and right subtrees
else {
Node* firstinorder = delnode->_right;
parent = delnode;
// It's not easy to delete directly , Find a replacement node
while (firstinorder->_left) {
parent = firstinorder;
firstinorder = firstinorder->_left;
}
// Replace the node val Assign a value to delnode, Then delete the replacement node
delnode->_val = firstinorder->_val;
if (firstinorder == parent->_left) {
parent->_left = firstinorder->_right;
}
else {
parent->_right = firstinorder->_right;
}
delete firstinorder;
return true;
}
}
Of binary search trees Find function
Node* Find(const K& key) {
return _Find(_root, key);
}
Node* _Find(const Node* root, const K& key) {
if (key == root->_val.first) {
return root;
}
Node* cur = _Find(root->_left, key);
if (cur) {
return cur;
}
cur = _Find(root->_right, key);
if (cur) {
return cur;
}
return nullptr;
}
Middle order traversal of binary search tree
void InOrder() {
_InOrder(_root);
}
void _InOrder(Node* root) {
if (root == nullptr) {
return;
}
cout << root->_val.first << ":" << root->_val.second << endl;
_InOrder(root->_left);
_InOrder(root->_right);
}
The overall code
#include <utility>
using namespace std;
template<class K, class V>
struct BSTreeNode {
BSTreeNode(const K& key = K(), const V& value = V())
:_val(key, value)
,_left(nullptr)
,_right(nullptr)
{}
BSTreeNode* _left;
BSTreeNode* _right;
pair<K, V> _val;
};
// Appointment ,value There's not the same
template<class K, class V>
class BSTree
{
typedef BSTreeNode<K, V> Node;
public:
bool Insert(const K& key, const V& value) {
Node* cur = new Node(key, value);
// Empty tree
if (_root == nullptr) {
_root = cur;
return true;
}
// Non empty
// look for cur Change the insertion position
Node* prev = cur;
cur = _root;
Node* parent = _root;
while (cur) {
if (key > parent->_val.first) {
parent = cur;
cur = cur->_right;
}
else if (key < parent->_val.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
cur = prev;
if (cur->_val.first > parent->_val.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
return true;
}
Node* Find(const K& key) {
return _Find(_root, key);
}
bool Erase(const K& key) {
if (_root == nullptr) {
return false;
}
// Find node
Node* delnode = _root;
Node* parent = nullptr;
while (delnode) {
if (delnode->_val.first == key) {
break;
}
else if (delnode->_val.first > key) {
parent = delnode;
delnode = delnode->_left;
}
else {
parent = delnode;
delnode = delnode->_right;
}
}
// I didn't find it
if (delnode == nullptr) {
return false;
}
// There are only right subtrees or leaf nodes
if (delnode->_left == nullptr) {
if (parent == nullptr) {
_root = delnode->_right;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_right;
delete delnode;
}
else {
parent->_right = delnode->_right;
delete delnode;
}
}
}
// Only the left sub tree
else if (delnode->_right == nullptr) {
if (parent == nullptr) {
_root = delnode->_left;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_left;
delete delnode;
}
else {
parent->_right = delnode->_left;
delete delnode;
}
}
}
// There are... In both the left and right subtrees
else {
Node* firstinorder = delnode->_right;
parent = delnode;
// It's not easy to delete directly , Find a replacement node
while (firstinorder->_left) {
parent = firstinorder;
firstinorder = firstinorder->_left;
}
// Replace the node val Assign a value to delnode, Then delete the replacement node
delnode->_val = firstinorder->_val;
if (firstinorder == parent->_left) {
parent->_left = firstinorder->_right;
}
else {
parent->_right = firstinorder->_right;
}
delete firstinorder;
return true;
}
}
void InOrder() {
_InOrder(_root);
}
private:
void _InOrder(Node* root) {
if (root == nullptr) {
return;
}
cout << root->_val.first << ":" << root->_val.second << endl;
_InOrder(root->_left);
_InOrder(root->_right);
}
Node* _Find(const Node* root, const K& key) {
if (key == root->_val.first) {
return root;
}
Node* cur = _Find(root->_left, key);
if (cur) {
return cur;
}
cur = _Find(root->_right, key);
if (cur) {
return cur;
}
return nullptr;
}
Node* _root = nullptr;
};
边栏推荐
- Sorting operation partition, argpartition, sort, argsort in numpy
- 预处理——插值
- Hisilicon 3559 universal platform construction: RTSP real-time playback support
- 代码质量管理
- Summer 2022 daily question 1 (1)
- CMB's written test - quantitative relationship
- OSCP工具之一: dirsearch用法大全
- 1.19.11.SQL客户端、启动SQL客户端、执行SQL查询、环境配置文件、重启策略、自定义函数(User-defined Functions)、构造函数参数
- Docker部署Mysql8的实现步骤
- QT thread and other 01 concepts
猜你喜欢
数据的存储
Implementation steps of docker deploying mysql8
卡尔曼滤波-1
Calculation of time and space complexity (notes of runners)
leetcode:面试题 17.24. 子矩阵最大累加和(待研究)
R data analysis: how to predict Cox model and reproduce high score articles
23. (ArcGIS API for JS) ArcGIS API for JS ellipse collection (sketchviewmodel)
10 ways of interface data security assurance
[hcie TAC] question 3
What is Ba? How about Ba? What is the relationship between Ba and Bi?
随机推荐
运算放大器应用汇总1
Kotlin Android 环境搭建
Code quality management
一些常用软件相关
Set WiFi automatic connection for raspberry pie
MySQL storage engine
使用 Dumpling 备份 TiDB 集群数据到 GCS
NoSQL之Redis配置与优化
Flutter3.0, the applet is not only run across mobile applications
[development software] tilipa Developer Software
三重半圆环进度条,直接拿去就能用
二叉搜索树的实现
How to customize the shortcut key for latex to stop running
未来发展路线确认!数字经济、数字化转型、数据...这次会议很重要
.net中 接口可以有默认实现了
SQL injection -day15
Introduction to opensea platform developed by NFT trading platform (I)
Allow public connections to local Ruby on Rails Development Server
Native MySQL
[leetcode] 450 and 98 (deletion and verification of binary search tree)