当前位置:网站首页>Implementation of binary search tree
Implementation of binary search tree
2022-07-07 03:56:00 【Wuhu kaichong ~】
Be careful : This article adopts c++, stay vs2022 Bottom debugging
Catalog
Binary search tree node implementation
Property setting of binary search tree
Deletion of binary search tree
Of binary search trees Find function
Middle order traversal of binary search tree
Binary search tree concept
Binary search tree is also called binary sort tree , It could be an empty tree , Or a binary tree with the following properties :
If its left subtree is not empty , Then the values of all nodes on the left subtree are smaller than the values of the root nodes
If its right subtree is not empty , Then the value of all nodes on the right subtree is greater than the value of the root node
Its left and right subtrees are also binary search trees
To put it bluntly , It is a sort tree , Its left sub tree is smaller than it , The right subtree is bigger than it , So it happens to be an ordered sequence after the sequence traversal
Binary search tree node implementation
Here is the node implemented by the template method , Each value of a node is a key value pair
template<class K, class V>
struct BSTreeNode {
BSTreeNode(const K& key = K(), const V& value = V())
:_val(key, value)
,_left(nullptr)
,_right(nullptr)
{}
BSTreeNode* _left;
BSTreeNode* _right;
pair<K, V> _val;
};Property setting of binary search tree
typedef BSTreeNode<K, V> Node;
Node* _root = nullptr;Binary search tree insertion
bool Insert(const K& key, const V& value) {
Node* cur = new Node(key, value);
// Empty tree
if (_root == nullptr) {
_root = cur;
return true;
}
// Non empty
// look for cur Insertion position
Node* prev = cur; // Save it cur Value
cur = _root;
Node* parent = _root;
while (cur) {
if (key > parent->_val.first) {
parent = cur;
cur = cur->_right;
}
else if (key < parent->_val.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
// Found the location of the parent node , Insert
cur = prev;
if (cur->_val.first > parent->_val.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
return true;
}Deletion of binary search tree
The deletion of binary search tree can be divided into four cases , The node to be deleted is a leaf node , Only the left child , Only the right child , Both the left and right children have ,
among , If the node to be deleted is a leaf node, it can be merged with only the left child or only the right child , Then there are only three cases ,
Only the left child and only the right child are easy to say , Just pass on its children to their parents , The difficulty is that both left and right children have , Then you can only find a replacement node , This replacement node is usually the largest in its left subtree ( The most right ) Or the smallest node in the right subtree ( Leftmost left ) That node of , Put the value of that node in the node to be deleted , Then delete that node
bool Erase(const K& key) {
if (_root == nullptr) {
return false;
}
// Find node
Node* delnode = _root;
Node* parent = nullptr;
while (delnode) {
if (delnode->_val.first == key) {
break;
}
else if (delnode->_val.first > key) {
parent = delnode;
delnode = delnode->_left;
}
else {
parent = delnode;
delnode = delnode->_right;
}
}
// I didn't find it
if (delnode == nullptr) {
return false;
}
// There are only right subtrees or leaf nodes
if (delnode->_left == nullptr) {
if (parent == nullptr) {
_root = delnode->_right;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_right;
delete delnode;
}
else {
parent->_right = delnode->_right;
delete delnode;
}
}
}
// Only the left sub tree
else if (delnode->_right == nullptr) {
// If delnode yes _root node
if (parent == nullptr) {
_root = delnode->_left;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_left;
delete delnode;
}
else {
parent->_right = delnode->_left;
delete delnode;
}
}
}
// There are... In both the left and right subtrees
else {
Node* firstinorder = delnode->_right;
parent = delnode;
// It's not easy to delete directly , Find a replacement node
while (firstinorder->_left) {
parent = firstinorder;
firstinorder = firstinorder->_left;
}
// Replace the node val Assign a value to delnode, Then delete the replacement node
delnode->_val = firstinorder->_val;
if (firstinorder == parent->_left) {
parent->_left = firstinorder->_right;
}
else {
parent->_right = firstinorder->_right;
}
delete firstinorder;
return true;
}
}Of binary search trees Find function
Node* Find(const K& key) {
return _Find(_root, key);
}
Node* _Find(const Node* root, const K& key) {
if (key == root->_val.first) {
return root;
}
Node* cur = _Find(root->_left, key);
if (cur) {
return cur;
}
cur = _Find(root->_right, key);
if (cur) {
return cur;
}
return nullptr;
}Middle order traversal of binary search tree
void InOrder() {
_InOrder(_root);
}
void _InOrder(Node* root) {
if (root == nullptr) {
return;
}
cout << root->_val.first << ":" << root->_val.second << endl;
_InOrder(root->_left);
_InOrder(root->_right);
}The overall code
#include <utility>
using namespace std;
template<class K, class V>
struct BSTreeNode {
BSTreeNode(const K& key = K(), const V& value = V())
:_val(key, value)
,_left(nullptr)
,_right(nullptr)
{}
BSTreeNode* _left;
BSTreeNode* _right;
pair<K, V> _val;
};
// Appointment ,value There's not the same
template<class K, class V>
class BSTree
{
typedef BSTreeNode<K, V> Node;
public:
bool Insert(const K& key, const V& value) {
Node* cur = new Node(key, value);
// Empty tree
if (_root == nullptr) {
_root = cur;
return true;
}
// Non empty
// look for cur Change the insertion position
Node* prev = cur;
cur = _root;
Node* parent = _root;
while (cur) {
if (key > parent->_val.first) {
parent = cur;
cur = cur->_right;
}
else if (key < parent->_val.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
cur = prev;
if (cur->_val.first > parent->_val.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
return true;
}
Node* Find(const K& key) {
return _Find(_root, key);
}
bool Erase(const K& key) {
if (_root == nullptr) {
return false;
}
// Find node
Node* delnode = _root;
Node* parent = nullptr;
while (delnode) {
if (delnode->_val.first == key) {
break;
}
else if (delnode->_val.first > key) {
parent = delnode;
delnode = delnode->_left;
}
else {
parent = delnode;
delnode = delnode->_right;
}
}
// I didn't find it
if (delnode == nullptr) {
return false;
}
// There are only right subtrees or leaf nodes
if (delnode->_left == nullptr) {
if (parent == nullptr) {
_root = delnode->_right;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_right;
delete delnode;
}
else {
parent->_right = delnode->_right;
delete delnode;
}
}
}
// Only the left sub tree
else if (delnode->_right == nullptr) {
if (parent == nullptr) {
_root = delnode->_left;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_left;
delete delnode;
}
else {
parent->_right = delnode->_left;
delete delnode;
}
}
}
// There are... In both the left and right subtrees
else {
Node* firstinorder = delnode->_right;
parent = delnode;
// It's not easy to delete directly , Find a replacement node
while (firstinorder->_left) {
parent = firstinorder;
firstinorder = firstinorder->_left;
}
// Replace the node val Assign a value to delnode, Then delete the replacement node
delnode->_val = firstinorder->_val;
if (firstinorder == parent->_left) {
parent->_left = firstinorder->_right;
}
else {
parent->_right = firstinorder->_right;
}
delete firstinorder;
return true;
}
}
void InOrder() {
_InOrder(_root);
}
private:
void _InOrder(Node* root) {
if (root == nullptr) {
return;
}
cout << root->_val.first << ":" << root->_val.second << endl;
_InOrder(root->_left);
_InOrder(root->_right);
}
Node* _Find(const Node* root, const K& key) {
if (key == root->_val.first) {
return root;
}
Node* cur = _Find(root->_left, key);
if (cur) {
return cur;
}
cur = _Find(root->_right, key);
if (cur) {
return cur;
}
return nullptr;
}
Node* _root = nullptr;
};
边栏推荐
- 本机mysql
- Optimization cases of complex factor calculation: deep imbalance, buying and selling pressure index, volatility calculation
- 太方便了,钉钉上就可完成代码发布审批啦!
- Free PHP online decryption tool source code v1.2
- What is Ba? How about Ba? What is the relationship between Ba and Bi?
- About Estimation Statistics
- Probability formula
- 海思3559万能平台搭建:RTSP实时播放的支持
- AVL树插入操作与验证操作的简单实现
- Codeworks 5 questions per day (1700 average) - day 7
猜你喜欢

我的勇敢对线之路--详细阐述,浏览器输入URL发生了什么

小程序能运行在自有App中,且实现直播和连麦?

【mysql】mysql中行排序

U.S. Air Force Research Laboratory, "exploring the vulnerability and robustness of deep learning systems", the latest 85 page technical report in 2022

A 股指数成分数据 API 数据接口

Baidu map JS development, open a blank, bmapgl is not defined, err_ FILE_ NOT_ FOUND

【DPDK】dpdk样例源码解析之三:dpdk-l3fwd_001

Codeworks 5 questions per day (1700 average) - day 7

复杂因子计算优化案例:深度不平衡、买卖压力指标、波动率计算

Construction of Hisilicon universal platform: color space conversion YUV2RGB
随机推荐
Hongmi K40S root gameplay notes
维护万星开源向量数据库是什么体验
QT item table new column name setting requirement exercise (find the number and maximum value of the array disappear)
termux设置电脑连接手机。(敲打命令贼快),手机termux端口8022
What is Ba? How about Ba? What is the relationship between Ba and Bi?
Tencent cloud native database tdsql-c was selected into the cloud native product catalog of the Academy of communications and communications
[security attack and Defense] how much do you know about serialization and deserialization?
NoSQL之Redis配置与优化
【安全攻防】序列化与反序列,你了解多少?
Baidu map JS development, open a blank, bmapgl is not defined, err_ FILE_ NOT_ FOUND
List interview common questions
Construction of Hisilicon universal platform: color space conversion YUV2RGB
VHDL implementation of arbitrary size matrix addition operation
leetcode:面试题 17.24. 子矩阵最大累加和(待研究)
Search of linear table
Termux set up the computer to connect to the mobile phone. (knock the command quickly), mobile phone termux port 8022
API data interface of A-share index component data
Arduino droplet detection
23. (ArcGIS API for JS) ArcGIS API for JS ellipse collection (sketchviewmodel)
浅谈网络安全之文件上传