当前位置:网站首页>Implementation of binary search tree
Implementation of binary search tree
2022-07-07 03:56:00 【Wuhu kaichong ~】
Be careful : This article adopts c++, stay vs2022 Bottom debugging
Catalog
Binary search tree node implementation
Property setting of binary search tree
Deletion of binary search tree
Of binary search trees Find function
Middle order traversal of binary search tree
Binary search tree concept
Binary search tree is also called binary sort tree , It could be an empty tree , Or a binary tree with the following properties :
If its left subtree is not empty , Then the values of all nodes on the left subtree are smaller than the values of the root nodes
If its right subtree is not empty , Then the value of all nodes on the right subtree is greater than the value of the root node
Its left and right subtrees are also binary search trees
To put it bluntly , It is a sort tree , Its left sub tree is smaller than it , The right subtree is bigger than it , So it happens to be an ordered sequence after the sequence traversal
Binary search tree node implementation
Here is the node implemented by the template method , Each value of a node is a key value pair
template<class K, class V>
struct BSTreeNode {
BSTreeNode(const K& key = K(), const V& value = V())
:_val(key, value)
,_left(nullptr)
,_right(nullptr)
{}
BSTreeNode* _left;
BSTreeNode* _right;
pair<K, V> _val;
};
Property setting of binary search tree
typedef BSTreeNode<K, V> Node;
Node* _root = nullptr;
Binary search tree insertion
bool Insert(const K& key, const V& value) {
Node* cur = new Node(key, value);
// Empty tree
if (_root == nullptr) {
_root = cur;
return true;
}
// Non empty
// look for cur Insertion position
Node* prev = cur; // Save it cur Value
cur = _root;
Node* parent = _root;
while (cur) {
if (key > parent->_val.first) {
parent = cur;
cur = cur->_right;
}
else if (key < parent->_val.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
// Found the location of the parent node , Insert
cur = prev;
if (cur->_val.first > parent->_val.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
return true;
}
Deletion of binary search tree
The deletion of binary search tree can be divided into four cases , The node to be deleted is a leaf node , Only the left child , Only the right child , Both the left and right children have ,
among , If the node to be deleted is a leaf node, it can be merged with only the left child or only the right child , Then there are only three cases ,
Only the left child and only the right child are easy to say , Just pass on its children to their parents , The difficulty is that both left and right children have , Then you can only find a replacement node , This replacement node is usually the largest in its left subtree ( The most right ) Or the smallest node in the right subtree ( Leftmost left ) That node of , Put the value of that node in the node to be deleted , Then delete that node
bool Erase(const K& key) {
if (_root == nullptr) {
return false;
}
// Find node
Node* delnode = _root;
Node* parent = nullptr;
while (delnode) {
if (delnode->_val.first == key) {
break;
}
else if (delnode->_val.first > key) {
parent = delnode;
delnode = delnode->_left;
}
else {
parent = delnode;
delnode = delnode->_right;
}
}
// I didn't find it
if (delnode == nullptr) {
return false;
}
// There are only right subtrees or leaf nodes
if (delnode->_left == nullptr) {
if (parent == nullptr) {
_root = delnode->_right;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_right;
delete delnode;
}
else {
parent->_right = delnode->_right;
delete delnode;
}
}
}
// Only the left sub tree
else if (delnode->_right == nullptr) {
// If delnode yes _root node
if (parent == nullptr) {
_root = delnode->_left;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_left;
delete delnode;
}
else {
parent->_right = delnode->_left;
delete delnode;
}
}
}
// There are... In both the left and right subtrees
else {
Node* firstinorder = delnode->_right;
parent = delnode;
// It's not easy to delete directly , Find a replacement node
while (firstinorder->_left) {
parent = firstinorder;
firstinorder = firstinorder->_left;
}
// Replace the node val Assign a value to delnode, Then delete the replacement node
delnode->_val = firstinorder->_val;
if (firstinorder == parent->_left) {
parent->_left = firstinorder->_right;
}
else {
parent->_right = firstinorder->_right;
}
delete firstinorder;
return true;
}
}
Of binary search trees Find function
Node* Find(const K& key) {
return _Find(_root, key);
}
Node* _Find(const Node* root, const K& key) {
if (key == root->_val.first) {
return root;
}
Node* cur = _Find(root->_left, key);
if (cur) {
return cur;
}
cur = _Find(root->_right, key);
if (cur) {
return cur;
}
return nullptr;
}
Middle order traversal of binary search tree
void InOrder() {
_InOrder(_root);
}
void _InOrder(Node* root) {
if (root == nullptr) {
return;
}
cout << root->_val.first << ":" << root->_val.second << endl;
_InOrder(root->_left);
_InOrder(root->_right);
}
The overall code
#include <utility>
using namespace std;
template<class K, class V>
struct BSTreeNode {
BSTreeNode(const K& key = K(), const V& value = V())
:_val(key, value)
,_left(nullptr)
,_right(nullptr)
{}
BSTreeNode* _left;
BSTreeNode* _right;
pair<K, V> _val;
};
// Appointment ,value There's not the same
template<class K, class V>
class BSTree
{
typedef BSTreeNode<K, V> Node;
public:
bool Insert(const K& key, const V& value) {
Node* cur = new Node(key, value);
// Empty tree
if (_root == nullptr) {
_root = cur;
return true;
}
// Non empty
// look for cur Change the insertion position
Node* prev = cur;
cur = _root;
Node* parent = _root;
while (cur) {
if (key > parent->_val.first) {
parent = cur;
cur = cur->_right;
}
else if (key < parent->_val.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
cur = prev;
if (cur->_val.first > parent->_val.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
return true;
}
Node* Find(const K& key) {
return _Find(_root, key);
}
bool Erase(const K& key) {
if (_root == nullptr) {
return false;
}
// Find node
Node* delnode = _root;
Node* parent = nullptr;
while (delnode) {
if (delnode->_val.first == key) {
break;
}
else if (delnode->_val.first > key) {
parent = delnode;
delnode = delnode->_left;
}
else {
parent = delnode;
delnode = delnode->_right;
}
}
// I didn't find it
if (delnode == nullptr) {
return false;
}
// There are only right subtrees or leaf nodes
if (delnode->_left == nullptr) {
if (parent == nullptr) {
_root = delnode->_right;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_right;
delete delnode;
}
else {
parent->_right = delnode->_right;
delete delnode;
}
}
}
// Only the left sub tree
else if (delnode->_right == nullptr) {
if (parent == nullptr) {
_root = delnode->_left;
delete delnode;
}
else {
if (delnode == parent->_left) {
parent->_left = delnode->_left;
delete delnode;
}
else {
parent->_right = delnode->_left;
delete delnode;
}
}
}
// There are... In both the left and right subtrees
else {
Node* firstinorder = delnode->_right;
parent = delnode;
// It's not easy to delete directly , Find a replacement node
while (firstinorder->_left) {
parent = firstinorder;
firstinorder = firstinorder->_left;
}
// Replace the node val Assign a value to delnode, Then delete the replacement node
delnode->_val = firstinorder->_val;
if (firstinorder == parent->_left) {
parent->_left = firstinorder->_right;
}
else {
parent->_right = firstinorder->_right;
}
delete firstinorder;
return true;
}
}
void InOrder() {
_InOrder(_root);
}
private:
void _InOrder(Node* root) {
if (root == nullptr) {
return;
}
cout << root->_val.first << ":" << root->_val.second << endl;
_InOrder(root->_left);
_InOrder(root->_right);
}
Node* _Find(const Node* root, const K& key) {
if (key == root->_val.first) {
return root;
}
Node* cur = _Find(root->_left, key);
if (cur) {
return cur;
}
cur = _Find(root->_right, key);
if (cur) {
return cur;
}
return nullptr;
}
Node* _root = nullptr;
};
边栏推荐
- 链表面试常见题
- Set static IP for raspberry pie
- Ubuntu20 installation redisjson record
- Termux set up the computer to connect to the mobile phone. (knock the command quickly), mobile phone termux port 8022
- Set WiFi automatic connection for raspberry pie
- CMB's written test - quantitative relationship
- 海思3559万能平台搭建:RTSP实时播放的支持
- Allow public connections to local Ruby on Rails Development Server
- What is the experience of maintaining Wanxing open source vector database
- Clock in during winter vacation
猜你喜欢
Can the applet run in its own app and realize live broadcast and connection?
一些常用软件相关
枚举通用接口&枚举使用规范
浅谈网络安全之文件上传
Implementation steps of docker deploying mysql8
Ubuntu 20 installation des enregistrements redisjson
21. (article ArcGIS API for JS) ArcGIS API for JS rectangular acquisition (sketchviewmodel)
Construction of Hisilicon universal platform: color space conversion YUV2RGB
【安全攻防】序列化與反序列,你了解多少?
Calculation of time and space complexity (notes of runners)
随机推荐
AVL树插入操作与验证操作的简单实现
Vernacular high concurrency (2)
25. (ArcGIS API for JS) ArcGIS API for JS line modification line editing (sketchviewmodel)
NoSQL之Redis配置与优化
Set static IP for raspberry pie
About Tolerance Intervals
本机mysql
Ubuntu 20 installation des enregistrements redisjson
红米k40s root玩机笔记
哈夫曼树基本概念
Enumeration general interface & enumeration usage specification
概率论公式
1.19.11.SQL客户端、启动SQL客户端、执行SQL查询、环境配置文件、重启策略、自定义函数(User-defined Functions)、构造函数参数
Basic concepts of Huffman tree
【knife-4j 快速搭建swagger】
Adaptive non European advertising retrieval system amcad
使用切面实现记录操作日志
GPT-3当一作自己研究自己,已投稿,在线蹲一个同行评议
My brave way to line -- elaborate on what happens when the browser enters the URL
Gpt-3 is a peer review online when it has been submitted for its own research