当前位置:网站首页>GMapping principle analysis/easy to understand

GMapping principle analysis/easy to understand

2022-08-03 14:15:00 The whole stack programmer webmaster

大家好,又见面了,我是你们的朋友全栈君.

概念:

1、Gmapping是基于滤波SLAM框架的常用开源SLAM算法.

2、Gmapping基于RBpf粒子滤波算法,即将定位和建图过程分离,先进行定位再进行建图.

3、Gmapping在RBpf算法上做了两个主要的改进:改进提议分布选择性重采样.

优缺点:

优点:Gmapping可以实时构建室内地图,在构建小场景地图所需的计算量较小且精度较高.相比Hector SLAM对激光雷达频率要求低、鲁棒性高(Hector 在机器人快速转向时很容易发生错误匹配,建出的地图发生错位,原因主要是优化算法容易陷入局部最小值);而相比Cartographer在构建小场景地图时,Gmapping不需要太多的粒子并且没有回环检测因此计算量小于Cartographer而精度并没有差太多.Gmapping有效利用了车轮里程计信息,这也是Gmapping对激光雷达频率要求低的原因:里程计可以提供机器人的位姿先验.而Hector和Cartographer的设计初衷不是为了解决平面移动机器人定位和建图,Hector主要用于救灾等地面不平坦的情况,因此无法使用里程计.而Cartographer是用于手持激光雷达完成SLAM过程,也就没有里程计可以用.

缺点:随着场景增大所需的粒子增加,因为每个粒子都携带一幅地图,因此在构建大地图时所需内存和计算量都会增加.因此不适合构建大场景地图.并且没有回环检测,因此在回环闭合时可能会造成地图错位,虽然增加粒子数目可以使地图闭合但是以增加计算量和内存为代价.所以不能像Cartographer那样构建大的地图,虽然论文生成几万平米的地图,但实际我们使用中建的地图没有几千平米时就会发生错误.Gmapping和Cartographer一个是基于滤波框架SLAM另一个是基于优化框架的SLAM,两种算法都涉及到时间复杂度和空间复杂度的权衡.Gmapping牺牲空间复杂度保证时间复杂度,这就造成Gmapping不适合构建大场景地图,试想一下你要构建200乘200米的环境地图,栅格分辨率选择5厘米,每个栅格占用一字节内存,那么一个粒子携带的地图就需要16M内存,如果是100个粒子就需要1.6G内存.如果地图变成500乘500米,粒子数为200个,可能电脑就要崩溃了.翻看Cartographer算法,优化相当于地图中只用一个粒子,因此存储空间比较Gmapping会小很多倍,但计算量大,一般的笔记本很难跑出来好的地图,甚至根本就跑不动.优化图需要复杂的矩阵运算,这也是谷歌为什么还有弄个ceres库出来的原因.

问题:

I hope readers can take the problem to the reading paper,So you can really understandGmapping中的很多概念.Here the problem is mainly:

  1. 为什么RBpf可以将定位和建图分离;
  2. Gmapping是如何在RBpfThe basis of improving the distribution of the proposed;
  3. 为什么要执行选择性重采样;
  4. 什么是粒子退化及如何防止粒子退化;
  5. 为什么Gmapping严重依赖里程计;
  6. 什么是提议分布;
  7. 什么是目标分布;
  8. 为什么需要提议分布和目标分布;
  9. 算法中是如何计算权重;
  10. Particle filter particle number and the sensor precision relationship;
  11. Why in a circle environment can increase the number of particles to built the map correctly closed;
  12. Gmapping是基于滤波框架的SLAM方法,Why build a figure interface shown on the map in the process of constantly adjust.

Readers if it is a good way to answer these questions already understandGmapping的算法了.

论文:

I'll show the reader the structure of the sequence paper,In the process of analytical paper answer the above questions.

摘要:

这部分简单解释了Gmapping是基于RBpf.RBpfIs an effective solution to locate at the same time and the algorithm to build figure,It will be building positioning and image separation;And each particle is carrying a map(This is one of the reasons for the particle filter is not suitable for building large map).但PBpf也存在缺点:所用The particle numberFrequently executed resampling(Readers can think about what caused theRBpfNeed more particle number,Why need to frequently executed re-sampling again).The particle number会造成计算量和内存消耗变大;Frequently executed resampling会造成粒子退化.因此Gmapping在RBpf的基础上改进提议分布选择性重采样,从而减少粒子个数和防止粒子退化.The improved proposal distributionNot only consider the movement(里程计)Information is also considering the latest observation(激光)Information may lead to more accurate so that you can make proposals inMore close to the target distribution.Selective resampling by设定阈值,只有在粒子权重变化超过阈值时才执行重采样从而大大Reduce the frequency of resampling.

Here you can answer the first question:为什么RBpf可以先定位后建图?

这里我们用公式来描述一下SLAM的过程:

,这是一个The joint probability distribution,We have observed and motion control map data to that position and at the same time.By the theory of probability is联合概率可以转换成条件概率即:P(x,y) = p(y|x)p(x). Popular explanation is that we at the same time for the joint distribution is not good for two variables can be first one of the variables and the variables as a condition to solve another.This is explainedGmappingWhy do you want to first locate again built figure:At the same time, orientation and figure is more difficult,因此我们可以先求解位姿,Of known position built figure is a very easy thing.

第一章 简介:

SLAM是一个鸡生蛋、蛋生鸡的问题.Positioning need built figure,Built figure need to locate,这就造成SLAMDifficult question.因此RBpf被引入解决SLAM问题,即先定位再建图.RBpf的主要问题在于其复杂度高,Since more particles are needed to build the map and frequently executed re-sampling.We known particle number and the amount of calculation memory consumption is linked to,The particle number assembly algorithm complexity caused by higher.因此减少粒子数是RBpf算法改进的方向之一;同时由于RBpfFrequently executed resampling会造成粒子退化.因此Reduce the resampling times是RBpfAnother improvement direction of the algorithm.

Answer what is the particle degradation in here:

粒子退化主要指正确的粒子被丢弃The particle diversity decrease,And frequent resampling intensifies the particle of the right abandoned the possibility ofThe particle diversity decreasing rate.这里先涉及一下重采样的知识,We know before the execution of resampling will calculate the weight of each particle number,有时会因为环境相似度高或是由于测量噪声的影响会使接近正确状态的粒子数权重较小而错误状态的粒子的权重反而会大.Resampling is based on the particle weight to collect particles,Such right of particles are more likely to be discarded,Frequent resampling exacerbate the correct weight but abandoned the possibility of a smaller particles.This also is one of particle degradation reasons.

另外一个原因就是Caused by frequent re-sampling particle diversity decreases the rate of increase,什么是The particle diversity呢?就是粒子的不同,As the first ten particle,In the event of five particles are discarded after resampling,The remaining five replicate five particles,,At this moment only five of the ten particle particle is different is the diversity of particles decrease.再通俗点解释,Such as rabbit born rabbit this problem.Our cage only hold 10 rabbits,So at any time we can only have 10 rabbit,But the rabbit will be breeding,那么怎么办呢?Simply kill long not good-looking rabbit(Where good is particle weight,Good weight is the weight of high not good-looking is low,Ha ha, the author is so capricious).Make nice rabbits have more a supplement to kill rabbit.We assume that the rabbit breeding in January once,After so many years these rabbits may be are the offspring of a rabbit.That is to say the rabbitsDNA都是一样的了,Is the rabbitDNAThe diversity of the decrease.Why would frequently executed re-sampling reduce particle diversity,It's like I'm a rabbit breeding in January for a while I may be five years later the rabbit will be with a Shared ancestors.But one day if you let the rabbit breeding for a while?May be a month after the rabbit is all started the offspring of a rabbit,The rabbitsDNAJust as the same.So in order to prevent particle degradation will reduce the number of sampling.

回到论文,为了Reduce particle countGmapping提出了改进提议分布,为了Reduce the frequency of resamplingGmapping提出了选择性重采样.现在问题到了如何改进提议分布了,先简单说一下后面会有详细介绍.就以下图为例,图中虚线为p(x|x’,u)The probability distribution of the odometer known as sampling gaussian distribution,这里只是一维的情况.实线为p(z|x)The probability distribution of the state after the laser is used for observation of gaussian distribution.The accuracy of information provided by the figure known observation(方差小)Compared with the control accuracy is higher a lot.这就是Gmapping改进提议分布的动因.但问题是我们无法对观测建模,This creates an observation but we want to use observation model, and has no direct access to,Behind the improvement proposal distribution in the paper is on how to use the latest observation to simulate target distribution.

第二章 使用RBpf建图:

这节主要讲RBpf建图的过程,首先RBpf是个什么东西?SALMTo solve the problem is control datau1:t和观测数据z1:tTo evaluate posture and Joint distribution map

.The problem is the two things together is not too good o,Unwrapped it both to do use the conditional probability to solve first position,我们知道有了位姿后建图是一件很容易的事情.这就是RB要做的事情:First locates in built figure.公式就变成了下面的形式:

为了估计位姿,RBpf使用粒子滤波来估计机器人位姿,The particle filter is the most commonly used inImportance resampling algorithm.这个算法通过不断迭代来估计每一时刻机器人的位姿.算法总共包括四个步骤:采样- 计算权重-重采样-地图估计.These have nothing to speak of the paper will understand.

Here the reader may be iterative formula for the weight calculation of the paper is unclear,Here I attached a picture I comment the formula

下面会用到提议分布和目标分布的知识,这里我先回答一下什么是提议分布和目标分布以及为什么需要这两个概念?

目标分布:什么是目标分布,就是我根据机器人携带的所有传感器的数据能确定机器人状态置信度的最大极限.我们知道机器人是不能直接进行测量的,它是靠自身携带的传感器来获得对自身状态的估计.The position of the mobile robot is estimated, for example, we want to,And the robot only wheel encoder and laser radar,Both data will form the robot pose estimation,Because of the sensor is noisy,So the estimate of the robot will have an uncertainty,And it is the uncertainty of the robot for the current pose a deterministic maximum limit,因为我没有数据信息来对机器人的状态进行约束了.机器人位姿变量通常由高斯函数来表示,不确定度就对应变量的方差.

提议分布:为什么要有提议分布?有人会说有了目标分布为什么还要有提议分布进行采样来获取下一时刻机器人位姿信息.答案是There is no way to direct sampling of target distribution modeling.Know know odometer model of odometer model isSuppose odometer are three parameters obey gaussian distribution,So we can from the gaussian distribution of sampling position since this day of the next moment.但对于Observed the laser is not gaussian modeling,这样是激光SLAMThe use of particle filter instead of one of the reasons for the extended kalman filtering.为什么呢?我们知道基于特征的SLAMAlgorithm often used extended kalman,Because observations based on the characteristics of maps will return characteristics of robot distance A distance and Angle values,Then it's easy for observation of gaussian modeling and then using the extended kalman filter.The data returned by laser is that360点的位置信息,每个位置信息都包括一个距离和角度信息,要是对360个点进行高斯建模计算量不言而喻. 但问题是我们希望从一个分布中进行采样来获取对下一时刻机器人位姿的估计,而在计算机中能模拟出的分布也就是高斯分布、三角分布等有限的分布.因此提议分布被提出来代替目标分布来提取下一时刻机器人位姿信息.而提议分布毕竟不是目标分布因此使用粒子权重来表征提议分布和目标分布的不一致性.

第三章 在RBpf的基础上改进提议分布和选择性重采样

Mainly revolves around how to improve the proposal distribution and selective sampling.

我们知道我们需要从提议分布中采样得到下一时刻机器人的位姿.那么提议分布与目标分布越接近的话我们用的粒子越少,If the particle is directly from the target distribution sampling only need one particle can obtain the robot pose estimation.So we have to do is to improve proposal distribution,If we only sampling from the odometer particle weight iteration formula is:

但是由第一幅图片我们可知里程计提供位姿信息的不确定度要比激光大的多,我们知道激光的分布相比里程计分布更接近真正的目标分布,因此如果可以把激光的信息融入到提议分布中的话那样提议分布就会更接近目标分布.The article said that compared to the precision of laser speedometer more accurate,So using odometer as the proposal distribution is sub-optimal.

同时因为粒子要覆盖里程计状态的全部空间,而这其中只有一小部分粒子是正真符合目标分布的,因此在计算权重时粒子的权重变化就会很大.但我们只有有限的粒子来模拟状态分布,因此我们需要把权重小的粒子丢弃,让权重大的粒子复制以达到使粒子收敛到真实状态附近.但这就造成需要频繁重采样,也就造成了RBpf的另一个弊端即:发生粒子退化.这里就解释了RBpf需要大量粒子并执行频繁重采样.

为了改进提议分布,论文中使用最近的一次观测,因此提议分布变成了:

The particle weight formula into:

The next is how to efficiently calculate proposal distribution,We know that when using raster map representation environment,Accurate approximate form of the target distribution is no way to obtain the observation of the probability distribution of unavailable(Reasons mentioned before is the laser360Wire we can't direct modeling).But we can use the ideas of the sampling,We can sample to simulate the proposal distribution.

为了获得The improved proposal distribution,我们可以第一步从运动模型采集粒子,第二步使用观测对这些粒子加权以选出最好的粒子.然后用这些权重大粒子来模拟出改进后的提议分布.但是如果观测概率比较尖锐则需要更多的粒子数目以能够覆盖观测概率.这样就导致了和从里程计中采样相同的问题.计算量太大.

目标分布通常只有几个峰值并在大多数情况下只有一个峰值.因此我们可以直接从峰值附近采样的话就可以大大简化计算量.因此论文中在峰值附近采K个值来模拟出提议分布.首先使用扫描匹配找出概率大的区域然后进行采样.我们通常使用高斯函数来构建提议分布,因此有了K个数据后我们就可以模拟出一个高斯函数作为提议分布:

有了模拟好的提议分布我们就可以采样出下一时刻机器人的位姿信息.

这里还有一个问题就是权重计算,我们知道权重描述的是目标分布和提议分布之间的差别.因此我们在计算权重时就是计算我们模拟出的提议分布和目标分布的不同.而这种不同体现在我们是由有限的采样模拟出目标分布,因此权重的计算公式为:

到此改进提议分布就完成了,接下来是选择性重采样.这部分比较简单,就是设定一个阈值,当粒子的权重变化大于我们设定的阈值时就会执行重采样,这样减少了采样的次数,也就减缓了粒子退化.至此理论部分就讲完了!

总结:

Theoretical part even if finished,In the paper and the experimental results of contrast,The reader to see we have to do is.After the theoretical part I have toGMapping源码进行讲解,Welcome the students in need continue to pay attention to.

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/124818.html原文链接:https://javaforall.cn

原网站

版权声明
本文为[The whole stack programmer webmaster]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/215/202208031342188663.html