当前位置:网站首页>leetcode-399:除法求值
leetcode-399:除法求值
2022-07-31 01:33:00 【菊头蝙蝠】
题目
给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi = values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。
另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。
返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0 替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用 -1.0 替代这个答案。
注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。
示例 1:
输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
示例 2:
输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
输出:[3.75000,0.40000,5.00000,0.20000]
示例 3:
输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
输出:[0.50000,2.00000,-1.00000,-1.00000]
解题
方法一:并查集
构建带权有向图+并查集
class UnionFind{
private:
vector<int> parent;
vector<double> weight;
public:
UnionFind(int n){
parent.resize(n);
weight.resize(n);
for(int i=0;i<n;i++){
parent[i]=i;
weight[i]=1;
}
}
int find(int index){
if(index==parent[index]) return index;
int origin=parent[index];
parent[index]=find(parent[index]);//同时会把父节点的weight也更新好
weight[index]*=weight[origin];
return parent[index];
}
void unite(int index1,int index2,double value){
int p1=find(index1);
int p2=find(index2);
if(p1!=p2){
parent[p1]=p2;
weight[p1]=weight[index2]*value/weight[index1];
}
}
double isConnected(int index1,int index2){
int p1=find(index1);
int p2=find(index2);
if(p1==p2){
return weight[index1]/weight[index2];
}
else return -1;
}
};
class Solution {
public:
vector<double> calcEquation(vector<vector<string>>& equations, vector<double>& values, vector<vector<string>>& queries) {
int equationSize=equations.size();
UnionFind uf(2*equationSize);
// 第 1 步:预处理,将变量的值与 id 进行映射,使得并查集的底层使用数组实现,方便编码
unordered_map<string,int> mp;
int id=0;
for(int i=0;i<equationSize;i++){
vector<string> equation=equations[i];
string s1=equation[0];
string s2=equation[1];
if(!mp.count(s1)){
mp[s1]=id++;
}
if(!mp.count(s2)){
mp[s2]=id++;
}
uf.unite(mp[s1],mp[s2],values[i]);
}
// 第 2 步:做查询
int queriesSize=queries.size();
vector<double> res(queriesSize);
for(int i=0;i<queriesSize;i++){
string s1=queries[i][0];
string s2=queries[i][1];
if(!mp.count(s1)||!mp.count(s2)) res[i]=-1;
else res[i]=uf.isConnected(mp[s1],mp[s2]);
}
return res;
}
};
边栏推荐
- System design. Short chain system design
- 孩子的编程启蒙好伙伴,自己动手打造小世界,长毛象教育AI百变编程积木套件上手
- 数字图像隐写术之JPEG 隐写分析
- Kyushu cloud as cloud computing standardization excellent member unit
- 4G通信模块CAT1和CAT4的区别
- 【952. Calculate the maximum component size according to the common factor】
- Set the browser scrollbar style
- 无线模块的参数介绍和选型要点
- Parameter introduction and selection points of wireless module
- tensorflow与GPU版本对应安装问题
猜你喜欢
观察者(observer)模式(一)
Rocky/GNU之Zabbix部署(2)
Jiuzhou Cloud was selected into the "Trusted Cloud's Latest Evaluation System and the List of Enterprises Passing the Evaluation in 2022"
进程间通信学习笔记
MySql的安装配置超详细教程与简单的建库建表方法
pycharm重命名后无法运行(报错: can‘t open file......No such file or directory)
What have I experienced when I won the offer of BAT and TMD technical experts?
typescript13 - type aliases
Set the browser scrollbar style
内网渗透——提权
随机推荐
C language _ structure pointer array function voting system
MySQL的安装教程(嗷嗷详细,包教包会~)
Installation problem corresponding to tensorflow and GPU version
Basic Parameters of RF Devices 1
倍增、DFS序
太阳能板最大面积 od js
【网络安全】文件上传靶场通关(1-11关)
Zabbix干啥用?
MySQL高级-六索引优化
typescript12 - union types
C语言_结构体指针数组函数选票系统
Distributed. Idempotency
I have been working in software testing for 3 years, how did I go from just getting started to automated testing?
The difference between 4G communication module CAT1 and CAT4
Centos 7.9安装PostgreSQL14.4步骤
Set the browser scrollbar style
使用PageHelper实现分页查询(详细)
ShardingSphere's vertical sub-database sub-table actual combat (5)
16、注册中心-consul
Bert usage and word prediction based on Keras_bert model