当前位置:网站首页>[2022 广东省赛M] 拉格朗日插值 (多元函数极值 分治NTT)
[2022 广东省赛M] 拉格朗日插值 (多元函数极值 分治NTT)
2022-07-06 08:15:00 【凌乱之风】
题意
求在满足 ∑ i = 1 k x i 2 a i 2 = 1 \sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} = 1 i=1∑kai2xi2=1 的条件下,从长度为 m m m 的数组 b b b 中选 k k k 个数组成 a 1 , a 2 , ⋯ , a k a_1,a_2,\cdots,a_k a1,a2,⋯,ak, ∏ i = 1 k x i \prod\limits_{i = 1} ^{k} x_i i=1∏kxi 的最大值的期望, k k k 为偶数。
( 1 ≤ k ≤ m ≤ 1 0 5 , 0 < b i < 1 0 9 ) (1 \le k \le m \le 10 ^ 5, 0 < b_i < 10 ^ 9) (1≤k≤m≤105,0<bi<109)
分析:
首先求解最大值需要用到高等数学中多元函数条件极值的拉格朗日乘数法,设
L ( x 1 , x 2 , ⋯ , x k , λ ) = ∏ i = 1 k x i + λ ( ∑ i = 1 k x i 2 a i 2 − 1 ) L(x_1,x_2,\cdots,x_k, \lambda) = \prod_{i = 1} ^{k} x_i + \lambda(\sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} - 1) L(x1,x2,⋯,xk,λ)=i=1∏kxi+λ(i=1∑kai2xi2−1)
对每个变量求偏导数,令偏导数为 0 0 0 得
∂ L ∂ x 1 = ∏ i = 1 k x i x 1 + 2 λ x 1 a 1 2 = 0 ∂ L ∂ x 2 = ∏ i = 1 k x i x 2 + 2 λ x 2 a 2 2 = 0 ⋯ ∂ L ∂ x k = ∏ i = 1 k x i x k + 2 λ x k a k 2 = 0 ∂ L ∂ λ = ∑ i = 1 k x i 2 a i 2 − 1 = 0 \frac{\partial L}{\partial x_1} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_1} + \frac{2\lambda x_1}{a_1 ^ 2} = 0 \\ \frac{\partial L}{\partial x_2} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_2} + \frac{2\lambda x_2}{a_2 ^ 2} = 0 \\ \cdots \\ \frac{\partial L}{\partial x_k} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_k} + \frac{2\lambda x_k}{a_k ^ 2} = 0 \\ \frac{\partial L}{\partial \lambda} = \sum_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} - 1 = 0 ∂x1∂L=x1i=1∏kxi+a122λx1=0∂x2∂L=x2i=1∏kxi+a222λx2=0⋯∂xk∂L=xki=1∏kxi+ak22λxk=0∂λ∂L=i=1∑kai2xi2−1=0
那么稍微化简一下,对于 1 ≤ i ≤ k 1 \le i \le k 1≤i≤k 都有
∏ i = 1 k x i = − 2 λ x i 2 a i 2 \prod_{i = 1} ^ {k}x_i = \frac{-2\lambda x_i ^ 2}{a_i ^ 2} i=1∏kxi=ai2−2λxi2
通过任意两式 1 ≤ i , j ≤ k 1 \le i, j \le k 1≤i,j≤k 联立消掉 λ \lambda λ
a i 2 ∏ i = 1 k x i − 2 x i 2 = a j 2 ∏ i = 1 k x i − 2 x j 2 \frac{a_i ^ 2\prod\limits_{i = 1} ^ {k}x_i}{-2x_i ^ 2} = \frac{a_j ^ 2\prod\limits_{i = 1} ^ {k}x_i}{-2x_j ^ 2} −2xi2ai2i=1∏kxi=−2xj2aj2i=1∏kxi
化简得
x i a i = x j a j \frac{x_i}{a_i} = \frac{x_j}{a_j} aixi=ajxj
所以当且仅当 x 1 a 1 = x 2 a 2 = ⋯ = x k a k \dfrac{x_1}{a_1} = \dfrac{x_2}{a_2}=\cdots=\dfrac{x_k}{a_k} a1x1=a2x2=⋯=akxk 时取得最大值,且 ∑ i = 1 k x i 2 a i 2 = 1 \sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} = 1 i=1∑kai2xi2=1,所以对任意 1 ≤ i ≤ k 1 \le i \le k 1≤i≤k 都有 x i a i = ± 1 k \dfrac{x_i}{a_i} = \pm \sqrt{\dfrac{1}{k}} aixi=±k1,那么 ∏ i = 1 k x i = k − k 2 ∏ i = 1 k a i \prod\limits_{i = 1} ^{k} x_i = k ^ {- \frac{k}{2}}\prod\limits_{i = 1} ^ {k} a_i i=1∏kxi=k−2ki=1∏kai,因为 k k k 为偶数,所以一定为正,且 k 2 \dfrac{k}{2} 2k 一定是整数。
求从 b b b 数组中选出 k k k 个数的所有乘积之和,考虑构造生成函数
F ( x ) = ∏ i = 1 k ( 1 + b i x ) F(x) = \prod_{i = 1} ^ {k} (1 + b_ix) F(x)=i=1∏k(1+bix)
那么 [ x k ] F ( x ) [x ^ k]F(x) [xk]F(x) 就是选出 k k k 个数的所有乘积之和,总共有 ( m k ) \dbinom{m}{k} (km) 种选法,所以期望就为
k − k 2 × [ x k ] F ( x ) ( m k ) k ^ {-\frac{k}{2}} \times \frac{[x ^ k]F(x)}{\dbinom{m}{k}} k−2k×(km)[xk]F(x)
F ( x ) F(x) F(x) 可用分治 NTT \text{NTT} NTT 计算,总时间复杂度 O ( n log 2 n ) O(n\log ^ 2n) O(nlog2n)
代码:
#include <bits/stdc++.h>
#define int long long
#define poly vector<int>
#define len(x) ((int)x.size())
using namespace std;
const int N = 3e5 + 5, G = 3, Ginv = 332748118, mod = 998244353;
int rev[N], lim;
int qmi(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
void polyinit(int n) {
for (lim = 1; lim < n; lim <<= 1);
for (int i = 0; i < lim; i ++) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? lim >> 1 : 0);
}
void NTT(poly &f, int op) {
for (int i = 0; i < lim; i ++) {
if (i < rev[i]) swap(f[i], f[rev[i]]);
}
for (int mid = 1; mid < lim; mid <<= 1) {
int Gn = qmi(op == 1 ? G : Ginv, (mod - 1) / (mid << 1));
for (int i = 0; i < lim; i += mid * 2) {
for (int j = 0, G0 = 1; j < mid; j ++, G0 = G0 * Gn % mod) {
int x = f[i + j], y = G0 * f[i + j + mid] % mod;
f[i + j] = (x + y) % mod, f[i + j + mid] = (x - y + mod) % mod;
}
}
}
if (op == -1) {
int inv = qmi(lim, mod - 2);
for (int i = 0; i < lim; i ++) f[i] = f[i] * inv % mod;
}
}
poly operator * (poly f, poly g) {
int n = len(f) + len(g) - 1;
polyinit(n), f.resize(lim), g.resize(lim);
NTT(f, 1), NTT(g, 1);
for (int i = 0; i < lim; i ++) f[i] = f[i] * g[i] % mod;
NTT(f, -1), f.resize(n);
return f;
}
vector<int> fact, infact;
void init(int n) {
fact.resize(n + 1), infact.resize(n + 1);
fact[0] = infact[0] = 1;
for (int i = 1; i <= n; i ++) {
fact[i] = fact[i - 1] * i % mod;
}
infact[n] = qmi(fact[n], mod - 2);
for (int i = n; i; i --) {
infact[i - 1] = infact[i] * i % mod;
}
}
int C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0ll;
return fact[n] * infact[n - m] % mod * infact[m] % mod;
}
signed main() {
cin.tie(0) -> sync_with_stdio(0);
init(1e5);
int n, k;
cin >> n >> k;
vector<int> b(n + 1);
vector<poly> f(n + 1, poly(2));
for (int i = 1; i <= n; i ++) {
cin >> b[i];
f[i][0] = 1, f[i][1] = b[i];
}
function<poly(int, int)> dc = [&](int l, int r) {
if (l == r) return f[l];
int mid = l + r >> 1;
return dc(l, mid) * dc(mid + 1, r);
};
poly ans = dc(1, n);
int res = 1;
cout << qmi(qmi(k, k / 2), mod - 2) * ans[k] % mod * qmi(C(n, k), mod - 2) % mod << endl;
}
边栏推荐
- 【云原生】手把手教你搭建ferry开源工单系统
- Data governance: data quality
- From monomer structure to microservice architecture, introduction to microservices
- Migrate data from SQL files to tidb
- "Designer universe" Guangdong responds to the opinions of the national development and Reform Commission. Primary school students incarnate as small community designers | national economic and Informa
- matplotlib. Widgets are easy to use
- A Closer Look at How Fine-tuning Changes BERT
- Introduction to backup and recovery Cr
- Parameter self-tuning of relay feedback PID controller
- Nacos Development Manual
猜你喜欢

【T31ZL智能视频应用处理器资料】

matplotlib. Widgets are easy to use

How to use information mechanism to realize process mutual exclusion, process synchronization and precursor relationship
![[count] [combined number] value series](/img/f5/6fadb8f1c8b75ddf5994c2c43feaa6.jpg)
[count] [combined number] value series

Go learning notes (3) basic types and statements (2)

The resources of underground pipe holes are tight, and the air blowing micro cable is not fragrant?

C language - bit segment

National economic information center "APEC industry +": economic data released at the night of the Spring Festival | observation of stable strategy industry fund

Make learning pointer easier (3)
![08- [istio] istio gateway, virtual service and the relationship between them](/img/fb/09793f5fd12c2906b73cc42722165f.jpg)
08- [istio] istio gateway, virtual service and the relationship between them
随机推荐
Oracle time display adjustment
How to use information mechanism to realize process mutual exclusion, process synchronization and precursor relationship
hcip--mpls
在 uniapp 中使用阿里图标
PHP - Common magic method (nanny level teaching)
On why we should program for all
使用 TiDB Lightning 恢复 S3 兼容存储上的备份数据
Webrtc series-h.264 estimated bit rate calculation
07- [istio] istio destinationrule (purpose rule)
21. Delete data
将 NFT 设置为 ENS 个人资料头像的分步指南
The Vice Minister of the Ministry of industry and information technology of "APEC industry +" of the national economic and information technology center led a team to Sichuan to investigate the operat
Introduction to backup and recovery Cr
08- [istio] istio gateway, virtual service and the relationship between them
Wireshark grabs packets to understand its word TCP segment
Data governance: Data Governance under microservice architecture
NFT smart contract release, blind box, public offering technology practice -- contract
Circular reference of ES6 module
Data governance: data quality
【云原生】手把手教你搭建ferry开源工单系统