当前位置:网站首页>[noi simulation] Anaid's tree (Mobius inversion, exponential generating function, Ehrlich sieve, virtual tree)
[noi simulation] Anaid's tree (Mobius inversion, exponential generating function, Ehrlich sieve, virtual tree)
2022-07-05 23:57:00 【DD(XYX)】
Topic
512mb, 4s
1 ≤ n ≤ 1 0 5 , 0 ≤ K ≤ 10 , 1 ≤ u , v ≤ n 1\leq n\leq 10^5,0\leq K\leq 10,1\leq u,v\leq n 1≤n≤105,0≤K≤10,1≤u,v≤n .
Answer key
We first have this formula :
ϕ ( x y ) = ϕ ( x ) ϕ ( y ) ⋅ g c d ( x , y ) ϕ ( g c d ( x , y ) ) \phi(xy)=\phi(x)\phi(y)\cdot \frac{gcd(x,y)}{\phi(gcd(x,y))} ϕ(xy)=ϕ(x)ϕ(y)⋅ϕ(gcd(x,y))gcd(x,y)
Then you can substitute the answer
∑ i = 1 n ∑ j = 1 n ϕ ( i j ) d k ( i , j ) = ∑ i = 1 n ∑ j = 1 n ϕ ( i ) ϕ ( j ) g c d ( i , j ) ϕ ( g c d ( i , j ) ) d k ( i , j ) = ∑ g = 1 n g ϕ ( g ) ∑ i = 1 n ∑ j = 1 n ϕ ( i ) ϕ ( j ) [ g c d ( i , j ) = g ] d k ( i , j ) \sum_{i=1}^n\sum_{j=1}^n\phi(ij)d^k(i,j)=\sum_{i=1}^n\sum_{j=1}^n\phi(i)\phi(j)\frac{gcd(i,j)}{\phi(gcd(i,j))}d^k(i,j)\\ =\sum_{g=1}^n\frac{g}{\phi(g)}\sum_{i=1}^n\sum_{j=1}^n\phi(i)\phi(j)[gcd(i,j)=g]d^k(i,j)\\ i=1∑nj=1∑nϕ(ij)dk(i,j)=i=1∑nj=1∑nϕ(i)ϕ(j)ϕ(gcd(i,j))gcd(i,j)dk(i,j)=g=1∑nϕ(g)gi=1∑nj=1∑nϕ(i)ϕ(j)[gcd(i,j)=g]dk(i,j)
In this step, let's use a simple method :
= ∑ g = 1 n g ϕ ( g ) ∑ g ∣ T μ ( T / g ) ∑ T ∣ i n ∑ T ∣ j n ϕ ( i ) ϕ ( j ) d k ( i , j ) = ∑ T = 1 n ( ∑ T ∣ i n ∑ T ∣ j n ϕ ( i ) ϕ ( j ) d k ( i , j ) ) ( ∑ g ∣ T g ϕ ( g ) μ ( T / g ) ) =\sum_{g=1}^n\frac{g}{\phi(g)}\sum_{g|T}\mu(T/g)\sum_{T|i}^n\sum_{T|j}^n\phi(i)\phi(j)d^k(i,j)\\ =\sum_{T=1}^n\left(\sum_{T|i}^n\sum_{T|j}^n\phi(i)\phi(j)d^k(i,j)\right)\left(\sum_{g|T}\frac{g}{\phi(g)}\mu(T/g)\right) =g=1∑nϕ(g)gg∣T∑μ(T/g)T∣i∑nT∣j∑nϕ(i)ϕ(j)dk(i,j)=T=1∑n⎝⎛T∣i∑nT∣j∑nϕ(i)ϕ(j)dk(i,j)⎠⎞⎝⎛g∣T∑ϕ(g)gμ(T/g)⎠⎞
Then we can preprocess the lump on the right .
Violence enumeration T T T There are a total of O ( n ln n ) O(n\ln n) O(nlnn) individual . We're interested in every T T T , Take out all T T T Multiple , Build a virtual tree .
Two points A , B A,B A,B stay l c a lca lca Make a contribution to , Suppose the length of the left part is a a a , The length of the right part is b b b , How to merge the two ?
We consider that k = 0 ∼ K k=0\sim K k=0∼K Put the situation of E G F EGF EGF in , Concrete ,
F A = ∑ i = 0 K ϕ ( A ) a i ⋅ x i i ! , F B = ∑ i = 0 K ϕ ( B ) b i ⋅ x i i ! F_{A}=\sum_{i=0}^K \phi(A)a^i\cdot\frac{x^i}{i!},F_B=\sum_{i=0}^K\phi(B)b^i\cdot\frac{x^i}{i!} FA=i=0∑Kϕ(A)ai⋅i!xi,FB=i=0∑Kϕ(B)bi⋅i!xi
hold F A , F B F_A,F_B FA,FB Multiply , Convolution can get k = 0 ∼ K k=0\sim K k=0∼K Of ϕ ( i ) ϕ ( j ) d k ( i , j ) \phi(i)\phi(j)d^k(i,j) ϕ(i)ϕ(j)dk(i,j) .
therefore , Let's do the virtual tree d f s \rm dfs dfs , Process each subtree to reach each descendant E G F EGF EGF And , Merging the contributions of two subtrees will directly E G F EGF EGF Just multiply it .
take A A A Of E G F EGF EGF from a k a^k ak Extended to ( a + 1 ) k (a+1)^k (a+1)k You can roll one ∑ x i i ! \sum \frac{x^i}{i!} ∑i!xi .
Time complexity O ( n ln n ( log n + K 2 ) ) O(n\ln n(\log n+K^2)) O(nlnn(logn+K2)) .
CODE
#include<map>
#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<random>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
#pragma GCC optimize(2)
using namespace std;
#define MAXN 100005
#define LL long long
#define ULL unsigned long long
#define ENDL putchar('\n')
#define DB double
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
#define PR pair<int,int>
#define UIN unsigned int
int xchar() {
static const int maxn = 1000000;
static char b[maxn];
static int pos = 0,len = 0;
if(pos == len) pos = 0,len = fread(b,1,maxn,stdin);
if(pos == len) return -1;
return b[pos ++];
}
#define getchar() xchar()
inline LL read() {
LL f = 1,x = 0;int s = getchar();
while(s < '0' || s > '9') {
if(s<0)return -1;if(s=='-')f=-f;s = getchar();}
while(s >= '0' && s <= '9') {
x = (x<<1) + (x<<3) + (s^48);s = getchar();}
return f*x;
}
void putpos(LL x) {
if(!x)return ;putpos(x/10);putchar((x%10)^48);}
inline void putnum(LL x) {
if(!x) {
putchar('0');return ;}
if(x<0) putchar('-'),x = -x;
return putpos(x);
}
inline void AIput(LL x,int c) {
putnum(x);putchar(c);}
const int MOD = 998244353;
int n,m,s,o,k;
inline void MD(int &x) {
if(x>=MOD)x-=MOD;}
int inv[MAXN],fac[MAXN],invf[MAXN];
vector<int> fc[MAXN];
int p[MAXN],cnt,f[MAXN],mu[MAXN],F[MAXN],dv[MAXN],phi[MAXN];
void init(int n) {
inv[0] = inv[1] = 1;
for(int i = 2;i <= max(n,15);i ++) inv[i] = (MOD-inv[MOD%i]) *1ll* (MOD/i) % MOD;
fac[0] = invf[0] = 1;
for(int i = 1;i <= 15;i ++) {
fac[i] = fac[i-1] *1ll* i % MOD;
invf[i] = invf[i-1] *1ll* inv[i] % MOD;
}
f[1] = 1; cnt = 0; mu[1] = 1; dv[1] = 1; phi[1] = 1;
for(int i = 2;i <= n;i ++) {
if(!f[i]) {
p[++ cnt] = i;
mu[i] = -1;phi[i] = i-1;dv[i] = i*1ll*inv[i-1]%MOD;
}
for(int j = 1,nm;j <= cnt && (nm=i*p[j]) <= n;j ++) {
f[nm] = 1;
if(i % p[j] == 0) {
mu[nm] = 0; phi[nm] = phi[i]*p[j];
dv[nm] = dv[i]; break;
}
mu[nm] = -mu[i]; phi[nm] = phi[i]*phi[p[j]];
dv[nm] = dv[i] *1ll* dv[p[j]] % MOD;
}
}
for(int i = 1;i <= n;i ++) {
for(int j = i,k = 1;j <= n;j += i,k ++) {
fc[j].push_back(i);
MD(F[j] += (MOD+mu[i])*1ll*dv[k]%MOD);
}
} return ;
}
int a[MAXN],dfn[MAXN],tim;
inline bool cmp(int a,int b) {
return dfn[a] < dfn[b];}
vector<int> g[MAXN];
int d[MAXN],fa[MAXN][20];//17
void dfs0(int x,int ff) {
d[x] = d[fa[x][0] = ff] + 1; dfn[x] = ++ tim;
for(int i = 1;i <= 17;i ++) fa[x][i] = fa[fa[x][i-1]][i-1];
for(int y:g[x]) if(y != ff) dfs0(y,x);
return ;
}
int lca(int a,int b) {
if(d[a] < d[b]) swap(a,b);
if(d[a] > d[b]) for(int i = 17;i >= 0;i --) {
if(d[fa[a][i]] >= d[b]) a = fa[a][i];
} if(a == b) return a;
for(int i = 17;i >= 0;i --) {
if(fa[a][i] ^ fa[b][i]) {
a = fa[a][i]; b = fa[b][i];
}
} return fa[a][0];
}
int tg[MAXN],wt[MAXN];
int hd[MAXN],nx[MAXN<<1],v[MAXN<<1],w[MAXN<<1],cne;
void ins(int x,int y,int z) {
nx[++cne] = hd[x]; v[cne] = y; hd[x] = cne; w[cne] = z;
}
struct vec{
int s[11];
vec(){
memset(s,0,sizeof(s));}
vec(int d) {
for(int i = 0,p = 1;i <= m;i ++,p = p*1ll*d%MOD)
s[i] = p*1ll*invf[i] % MOD;
}
}dp[MAXN];
inline vec operator * (vec a,vec b) {
for(int i = m;i >= 0;i --) {
int nm = 0;
for(int j = 0;j <= i;j ++) {
nm = (nm + a.s[i-j]*1ll*b.s[j]) % MOD;
} a.s[i] = nm;
} return a;
}
inline vec& operator *= (vec &a,vec b) {
for(int i = m;i >= 0;i --) {
int nm = 0;
for(int j = 0;j <= i;j ++) {
nm = (nm + a.s[i-j]*1ll*b.s[j]) % MOD;
} a.s[i] = nm;
} return a;
}
inline vec& operator += (vec &a,vec b) {
for(int i = 0;i <= m;i ++) {
MD(a.s[i] += b.s[i]);
} return a;
}
vec as;
void dfs(int x,int ff) {
dp[x] = vec(); MD(dp[x].s[0] += wt[x]);
MD(as.s[0] += wt[x]*1ll*wt[x]%MOD*inv[2]%MOD);
for(int i = hd[x];i;i = nx[i]) {
int y = v[i]; if(y == ff) continue;
dfs(y,x); dp[y] *= vec(w[i]);
as += dp[x] * dp[y];
for(int j = 0;j <= m;j ++) MD(dp[x].s[j] += dp[y].s[j]);
}
return ;
}
int st[MAXN],tp;
int main() {
freopen("tree.in","r",stdin);
freopen("tree.out","w",stdout);
n = read(); m = read();
init(n);
for(int i = 1;i < n;i ++) {
s = read();o = read();
g[s].push_back(o);
g[o].push_back(s);
}
dfs0(1,0);
vec ans;
for(int D = 1;D <= n;D ++) {
int cn = 0; cne = 0;
for(int j = D;j <= n;j += D) {
a[++ cn] = j; wt[j] = phi[j];
tg[j] = D; hd[j] = 0;
}
sort(a + 1,a + 1 + cn,cmp);
st[tp = 1] = a[1];
for(int i = 1;i <= cn;i ++) {
int x = a[i],lc = lca(x,st[tp]),p = 0;
if(tg[lc] != D) {
tg[lc] = D; wt[lc] = hd[lc] = 0;
}
while(tp > 0 && d[st[tp]] > d[lc]) {
if(p) ins(st[tp],p,d[p]-d[st[tp]]);
p = st[tp --];
}
if(p) ins(lc,p,d[p] - d[lc]);
if(st[tp] != lc) st[++ tp] = lc;
if(x != lc) st[++ tp] = x;
}
int p = 0;
while(tp > 0) {
if(p) ins(st[tp],p,d[p]-d[st[tp]]);
p = st[tp --];
}
as = vec();
dfs(p,0);
for(int i = 0;i <= m;i ++) as.s[i] = as.s[i] *2ll* F[D] % MOD;
ans += as;
}
for(int i = 0;i <= m;i ++) {
AIput(ans.s[i]*1ll*fac[i]%MOD,'\n');
}
return 0;
}
边栏推荐
- 提升工作效率工具:SQL批量生成工具思想
- Spire. PDF for NET 8.7.2
- Cloudcompare & PCL point cloud randomly adds noise
- CAS and synchronized knowledge
- In C#, why can't I modify the member of a value type instance in a foreach loop?
- 同事悄悄告诉我,飞书通知还能这样玩
- 18.(arcgis api for js篇)arcgis api for js点采集(SketchViewModel)
- Spire Office 7.5.4 for NET
- [SQL] SQL expansion languages of mainstream databases (T-SQL, pl/sql, pl/pgsql)
- DEJA_VU3D - Cesium功能集 之 055-国内外各厂商地图服务地址汇总说明
猜你喜欢
Qt QPushButton详解
20220703 week race: number of people who know the secret - dynamic rules (problem solution)
软件测试工程师必会的银行存款业务,你了解多少?
Biased sample variance, unbiased sample variance
亲测可用fiddler手机抓包配置代理后没有网络
GFS distributed file system
4 points tell you the advantages of the combination of real-time chat and chat robots
用列錶初始化你的vector&&initializer_list簡介
20220703 周赛:知道秘密的人数-动规(题解)
openssl-1.0.2k版本升级openssl-1.1.1p
随机推荐
After summarizing more than 800 kubectl aliases, I'm no longer afraid that I can't remember commands!
20. Migrate freetype font library
行列式学习笔记(一)
[SQL] SQL expansion languages of mainstream databases (T-SQL, pl/sql, pl/pgsql)
mysql-全局锁和表锁
VBA fast switching sheet
wx.getLocation(Object object)申请方法,最新版
How to get all the values stored in localstorage
权限问题:source .bash_profile permission denied
4 points tell you the advantages of the combination of real-time chat and chat robots
FFT 学习笔记(自认为详细)
el-cascader的使用以及报错解决
QT QPushButton details
How to rotate the synchronized / refreshed icon (EL icon refresh)
JS 这次真的可以禁止常量修改了!
The use of El cascader and the solution of error reporting
Zero rhino technology joined hands with the intelligence Club: the "causal faction" forum was successfully held, and the "causal revolution" brought the next generation of trusted AI
Qcombox (rewrite) + qcompleter (auto completion, auto loading the drop-down options of qcombox, setting the background color)
DEJA_VU3D - Cesium功能集 之 055-国内外各厂商地图服务地址汇总说明
数据库遇到的问题