当前位置:网站首页>Let f (x) = Σ x^n/n^2, prove that f (x) + F (1-x) + lnxln (1-x) = Σ 1/n^2
Let f (x) = Σ x^n/n^2, prove that f (x) + F (1-x) + lnxln (1-x) = Σ 1/n^2
2022-07-07 05:17:00 【Fish in the deep sea (・ ω& lt;)*】
subject
set up f ( x ) = ∑ n = 1 ∞ x n n 2 , prove : f ( x ) + f ( 1 − x ) + ln x ln ( 1 − x ) = ∑ n = 1 ∞ 1 n 2 \text{ set up }f\left( x \right) =\sum_{n=1}^{\infty}{\frac{x^n}{n^2}}\text{, prove :}f\left( x \right) +f\left( 1-x \right) +\ln x\ln \left( 1-x \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}} set up f(x)=n=1∑∞n2xn, prove :f(x)+f(1−x)+lnxln(1−x)=n=1∑∞n21
answer
f ′ ( x ) = ∑ n = 1 ∞ x n − 1 n = 1 x ∑ n = 1 ∞ x n n = 1 x ∫ 0 x ∑ n = 1 ∞ t n − 1 d t = 1 x ∫ 0 x ∑ n = 0 ∞ t n d t = 1 x ∫ 0 x 1 1 − t d t = − ln ( 1 − x ) x f'\left( x \right) =\sum_{n=1}^{\infty}{\frac{x^{n-1}}{n}}=\frac{1}{x}\sum_{n=1}^{\infty}{\frac{x^n}{n}}=\frac{1}{x}\int_0^x{\sum_{n=1}^{\infty}{t^{n-1}}dt}=\frac{1}{x}\int_0^x{\sum_{n=0}^{\infty}{t^n}dt}=\frac{1}{x}\int_0^x{\frac{1}{1-t}dt}=-\frac{\ln \left( 1-x \right)}{x} f′(x)=n=1∑∞nxn−1=x1n=1∑∞nxn=x1∫0xn=1∑∞tn−1dt=x1∫0xn=0∑∞tndt=x1∫0x1−t1dt=−xln(1−x)
f ′ ( x ) − f ′ ( 1 − x ) = − ln ( 1 − x ) x + ln x 1 − x f'\left( x \right) -f'\left( 1-x \right) =-\frac{\ln \left( 1-x \right)}{x}+\frac{\ln x}{1-x} f′(x)−f′(1−x)=−xln(1−x)+1−xlnx
∵ [ ln x ln ( 1 − x ) ] ′ = ln ( 1 − x ) x − ln x 1 − x \because \left[ \ln x\ln \left( 1-x \right) \right] '=\frac{\ln \left( 1-x \right)}{x}-\frac{\ln x}{1-x} ∵[lnxln(1−x)]′=xln(1−x)−1−xlnx
∴ f ′ ( x ) − f ′ ( 1 − x ) + [ ln x ln ( 1 − x ) ] ′ = 0 \therefore f'\left( x \right) -f'\left( 1-x \right) +\left[ \ln x\ln \left( 1-x \right) \right] '=0 ∴f′(x)−f′(1−x)+[lnxln(1−x)]′=0
Make g ( x ) = f ( x ) + f ( 1 − x ) + ln x ln ( 1 − x ) x ∈ ( 0 , 1 ) \text{ Make }g\left( x \right) =f\left( x \right) +f\left( 1-x \right) +\ln x\ln \left( 1-x \right) \ \ x\in \left( 0,1 \right) Make g(x)=f(x)+f(1−x)+lnxln(1−x) x∈(0,1)
∴ g ′ ( x ) = 0 \therefore g'\left( x \right) =0 ∴g′(x)=0
∵ ∫ 0 x g ′ ( u ) d u = g ( x ) − lim t → 0 + g ( t ) = 0 \because \int_0^x{g'\left( u \right)}du=g\left( x \right) -\underset{t\rightarrow 0^+}{\lim}g\left( t \right) =0 ∵∫0xg′(u)du=g(x)−t→0+limg(t)=0
∴ g ( x ) = lim t → 0 + g ( t ) \therefore g\left( x \right) =\underset{t\rightarrow 0^+}{\lim}g\left( t \right) ∴g(x)=t→0+limg(t)
∵ lim t → 0 + g ( t ) = lim t → 0 + f ( t ) + lim t → 0 + f ( 1 − t ) + lim t → 0 + ln t ⋅ ln ( 1 − t ) \because \underset{t\rightarrow 0^+}{\lim}g\left( t \right) =\underset{t\rightarrow 0^+}{\lim}f\left( t \right) +\underset{t\rightarrow 0^+}{\lim}f\left( 1-t \right) +\underset{t\rightarrow 0^+}{\lim}\ln t\cdot \ln \left( 1-t \right) ∵t→0+limg(t)=t→0+limf(t)+t→0+limf(1−t)+t→0+limlnt⋅ln(1−t)
among lim t → 0 + f ( t ) = 0 , lim t → 0 + f ( 1 − t ) = ∑ n = 1 ∞ 1 n 2 , lim t → 0 + ln t ⋅ ln ( 1 − t ) = lim t → 0 + t ln t = lim t → 0 + ln t 1 t = lim t → 0 + 1 t − 1 t 2 = 0 \text{ among }\underset{t\rightarrow 0^+}{\lim}f\left( t \right) =0,\ \underset{t\rightarrow 0^+}{\lim}f\left( 1-t \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}},\ \underset{t\rightarrow 0^+}{\lim}\ln t\cdot \ln \left( 1-t \right) =\underset{t\rightarrow 0^+}{\lim}t\ln t=\underset{t\rightarrow 0^+}{\lim}\frac{\ln t}{\frac{1}{t}}=\underset{t\rightarrow 0^+}{\lim}\frac{\frac{1}{t}}{-\frac{1}{t^2}}=0 among t→0+limf(t)=0, t→0+limf(1−t)=n=1∑∞n21, t→0+limlnt⋅ln(1−t)=t→0+limtlnt=t→0+limt1lnt=t→0+lim−t21t1=0
∴ lim t → 0 + g ( t ) = ∑ n = 1 ∞ 1 n 2 \therefore \underset{t\rightarrow 0^+}{\lim}g\left( t \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}} ∴t→0+limg(t)=n=1∑∞n21
∴ g ( x ) = ∑ n = 1 ∞ 1 n 2 \therefore g\left( x \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}} ∴g(x)=n=1∑∞n21
∴ f ( x ) + f ( 1 − x ) + ln x ln ( 1 − x ) = ∑ n = 1 ∞ 1 n 2 \therefore f\left( x \right) +f\left( 1-x \right) +\ln x\ln \left( 1-x \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}} ∴f(x)+f(1−x)+lnxln(1−x)=n=1∑∞n21
边栏推荐
猜你喜欢
ThinkPHP关联预载入with
Liste des hôtes d'inventaire dans ansible (je vous souhaite des fleurs et de la romance sans fin)
Understand common network i/o models
Auto. JS get all app names of mobile phones
Full link voltage test: the dispute between shadow database and shadow table
ThinkPHP Association preload with
No experts! Growth secrets for junior and intermediate programmers and "quasi programmers" who are still practicing in Universities
使用知云阅读器翻译统计遗传学书籍
Leetcode (46) - Full Permutation
Window scheduled tasks
随机推荐
ASP. Net MVC - resource cannot be found error - asp Net MVC – Resource Cannot be found error
Y58. Chapter III kubernetes from entry to proficiency - continuous integration and deployment (Sany)
Weebly移动端网站编辑器 手机浏览新时代
Knapsack problem (01 knapsack, complete knapsack, dynamic programming)
U++4 interface learning notes
《二》标签
[ArcGIS tutorial] thematic map production - population density distribution map - population density analysis
与利润无关的背包问题(深度优先搜索)
Linkedblockingqueue source code analysis - initialization
10 distributed databases that take you to the galaxy
AttributeError: module ‘torch._ C‘ has no attribute ‘_ cuda_ setDevice‘
NPDP产品经理认证,到底是何方神圣?
想要选择一些部门优先使用 OKR, 应该如何选择试点部门?
SQL injection HTTP header injection
Error: No named parameter with the name ‘foregroundColor‘
如何设计 API 接口,实现统一格式返回?
ThinkPHP关联预载入with
Basic knowledge of road loss of 3GPP channel model
SQL injection - secondary injection and multi statement injection
Wonderful express | Tencent cloud database June issue