当前位置:网站首页>[combinatorics] exponential generating function (example of exponential generating function solving multiple set arrangement)
[combinatorics] exponential generating function (example of exponential generating function solving multiple set arrangement)
2022-07-03 18:20:00 【Programmer community】
List of articles
- One 、 Example of solving multiple set permutation with exponential generating function
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
- 【 Combinatorial mathematics 】 Exponential generating function ( The concept of exponential generating function | Permutation number exponential generating function = General generating function of combinatorial number | Example of exponential generating function )
- 【 Combinatorial mathematics 】 Exponential generating function ( Properties of exponential generating function | The exponential generating function solves the arrangement of multiple sets )
One 、 Example of solving multiple set permutation with exponential generating function
Use
1
,
2
,
3
,
4
1,2,3,4
1,2,3,4 Four numbers make up five digits , requirement
1
1
1 The number of occurrences cannot exceed
2
2
2 Time , But there has to be ,
2
2
2 Not more than
1
1
1 Time ,
3
3
3 The most frequent occurrence
3
3
3 Time ,
4
4
4 Even number of times ,
Find the number of the above five digits ;
This is a solution Multiset arrangement The subject of , Use Exponential generating function ;
Altogether
5
5
5 A place , Use
1
,
2
,
3
,
4
1,2,3,4
1,2,3,4 To this
5
5
5 Fill in positions ,
Select a number to analyze :
1
1
1 No more than
2
2
2 Time , There must be , That is, it must be greater than
0
0
0 , Then the number that can be selected is
1
,
2
1,2
1,2 ,
2
2
2 No more than
1
1
1 Time , Optional number
0
,
1
0,1
0,1 ,
3
3
3 Emergence can achieve
3
3
3 Time , Number of selectable
0
,
1
,
2
,
3
0,1,2,3
0,1,2,3 ,
4
4
4 Even number of times , The optional number is
0
,
2
,
4
,
6
,
8
,
⋯
0, 2, 4, 6, 8, \cdots
0,2,4,6,8,⋯ , Pay attention to the total choice here
5
5
5 individual , When finally solving multiple sets , Mainly to see
x
5
x^5
x5 The former idempotent , So here's The optional number is... In a single factor
x
x
x Subidempotent , There is no need to exceed
5
5
5 , choice
0
,
2
,
4
0,2,4
0,2,4 that will do ;
According to the following model , Write the exponential generating function ;
Multiple sets
S
=
{
n
1
⋅
a
1
,
n
2
⋅
a
2
,
⋯
,
n
k
⋅
a
k
}
S=\{ n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k \}
S={ n1⋅a1,n2⋅a2,⋯,nk⋅ak}
Multiple sets
S
S
S Of
r
r
r Number of permutations Composition sequence
{
a
r
}
\{ a_r \}
{ ar} , The corresponding exponential generating function is :
G
e
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
f
n
k
(
x
)
G_e(x) = f_{n_1}(x) f_{n_2}(x) \cdots f_{n_k}(x)
Ge(x)=fn1(x)fn2(x)⋯fnk(x) *
Each generated function item
f
n
i
(
x
)
f_{n_i}(x)
fni(x) yes
f
n
i
(
x
)
=
1
+
x
+
x
2
2
!
+
⋯
+
x
n
i
n
i
!
f_{n_i}(x) = 1 + x + \cfrac{x^2}{2!} + \cdots + \cfrac{x^{n_i}}{n_i!}
fni(x)=1+x+2!x2+⋯+ni!xni *
take
G
e
(
x
)
G_e(x)
Ge(x) an , Among them
r
r
r The coefficient is the permutation number of multiple sets ; *
Writing of exponential generating function :
① Determine the number of generated function items : Number of element types in multiple sets
② Determine the number of items in the generated function item : Pick value Number ;
③ Itemized format :
x
n
n
!
\cfrac{x^n}{n!}
n!xn
④ Partial power : Pick value ;
All in all
4
4
4 Elements
1
,
2
,
3
,
4
1,2,3,4
1,2,3,4 , So the generating function is
4
4
4 Multiply the generated function items ;
1
1
1 The generating function item corresponding to the element :
- Pick value :
1
,
2
1,2
1,2
- final result :
x
1
1
!
+
x
2
2
!
=
x
+
x
2
2
!
\cfrac{x^1}{1!} + \cfrac{x^2}{2!} = x + \cfrac{x^2}{2!}
1!x1+2!x2=x+2!x2
2
2
2 The generating function item corresponding to the element :
- Pick value :
0
,
1
0,1
0,1
- final result :
x
0
0
!
+
x
1
1
!
=
1
+
x
\cfrac{x^0}{0!} + \cfrac{x^1}{1!} = 1 + x
0!x0+1!x1=1+x
3
3
3 The generating function item corresponding to the element :
- Pick value :
0
,
1
,
2
,
3
0,1,2,3
0,1,2,3
- final result :
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
x
3
3
!
=
1
+
x
+
x
2
2
!
+
x
3
3
!
\cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} = 1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!}
0!x0+1!x1+2!x2+3!x3=1+x+2!x2+3!x3
4
4
4 The generating function item corresponding to the element :
- Pick value :
0
,
2
,
4
,
6
,
⋯
0,2,4,6 , \cdots
0,2,4,6,⋯ , Only... Is selected here
5
5
5 individual , seek
x
x
x To the power of
5
5
5 The coefficient before , Here you only need to select
0
,
2
,
4
0 , 2, 4
0,2,4 that will do ,
5
5
5 The above number is completely unnecessary , You can ignore ;
- final result :
x
0
0
!
+
x
2
2
!
+
x
4
4
!
=
1
+
x
2
2
!
+
x
4
4
!
\cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} = 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!}
0!x0+2!x2+4!x4=1+2!x2+4!x4
Generate four of the above exponents Multiply the exponential generating function terms , To calculate the
x
5
x^5
x5 The coefficient before , Is the permutation number of multiple sets ;
G
e
(
x
)
=
(
x
+
x
2
2
!
)
(
1
+
x
)
(
1
+
x
+
x
2
2
!
+
x
3
3
!
)
(
1
+
x
2
2
!
+
x
4
4
!
)
G_e(x) = (x + \cfrac{x^2}{2!}) (1 + x) (1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!}) (1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!})
Ge(x)=(x+2!x2)(1+x)(1+x+2!x2+3!x3)(1+2!x2+4!x4)
=
x
+
5
x
2
2
!
+
18
x
3
3
!
+
64
x
4
4
!
+
215
x
5
5
!
⋯
\ \ \ \ \ \ \ \ \ \ \ \,= x + 5\cfrac{x^2}{2!} + 18\cfrac{x^3}{3!} + 64\cfrac{x^4}{4!} + 215\cfrac{x^5}{5!} \cdots
=x+52!x2+183!x3+644!x4+2155!x5⋯
Don't forget the back , among
x
5
x^5
x5 The item is
215
x
5
5
!
215\cfrac{x^5}{5!}
2155!x5 , Therefore, what is required in the title
5
5
5 The number of digits is
215
215
215 individual ;
边栏推荐
- AcWing 271. 杨老师的照相排列【多维DP】
- WebView module manages the application window interface to realize the logical control and management operation of multiple windows (Part 1)
- Line by line explanation of yolox source code of anchor free series network (5) -- mosaic data enhancement and mathematical understanding
- Image 24 bits de profondeur à 8 bits de profondeur
- Class exercises
- 聊聊支付流程的设计与实现逻辑
- English语法_形容词/副词3级 - 倍数表达
- 2022-2028 global physiotherapy clinic industry research and trend analysis report
- Sensor 调试流程
- How to install PHP on Ubuntu 20.04
猜你喜欢
聊聊支付流程的设计与实现逻辑
The vscode code is automatically modified to a compliance code when it is formatted and saved
Codeforces Round #803 (Div. 2) C. 3SUM Closure
微服务组件Sentinel控制台调用
Prototype inheritance..
2022-2028 global copper foil (thickness 12 μ M) industry research and trend analysis report
Computer graduation design PHP makeup sales Beauty shopping mall
Bidding procurement scheme management of Oracle project management system
2022-2028 global physiotherapy clinic industry research and trend analysis report
List的stream中Long对象与long判等问题记录
随机推荐
Ml (machine learning) softmax function to realize the classification of simple movie categories
[combinatorics] exponential generating function (proving that the exponential generating function solves the arrangement of multiple sets)
Golang string (string) and byte array ([]byte) are converted to each other
Supervisor monitors gearman tasks
(8) HS corner detection
Micro service component sentinel console call
基于人脸识别的课堂考勤系统 tkinter+openpyxl+face_recognition
[combinatorics] generating function (positive integer splitting | basic model of positive integer splitting | disordered splitting with restrictions)
On Data Mining
G1 garbage collector of garbage collector
2022-2028 global solid phase extraction column industry research and trend analysis report
Redis core technology and practice - learning notes (VII) sentinel mechanism
[combinatorics] generating function (use generating function to solve the combination number of multiple sets R)
Research Report on investment trends and development planning of China's thermal insulation material industry, 2022-2028
supervisor监控Gearman任务
图像24位深度转8位深度
A. Odd Selection【BruteForce】
Bloom filter [proposed by bloom in 1970; redis cache penetration solution]
Research Report on market demand and investment planning for the development of China's office chair industry, 2022-2028
Module 9 operation