当前位置:网站首页>[combinatorics] exponential generating function (example of exponential generating function solving multiple set arrangement)
[combinatorics] exponential generating function (example of exponential generating function solving multiple set arrangement)
2022-07-03 18:20:00 【Programmer community】
List of articles
- One 、 Example of solving multiple set permutation with exponential generating function
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
- 【 Combinatorial mathematics 】 Exponential generating function ( The concept of exponential generating function | Permutation number exponential generating function = General generating function of combinatorial number | Example of exponential generating function )
- 【 Combinatorial mathematics 】 Exponential generating function ( Properties of exponential generating function | The exponential generating function solves the arrangement of multiple sets )
One 、 Example of solving multiple set permutation with exponential generating function
Use
1
,
2
,
3
,
4
1,2,3,4
1,2,3,4 Four numbers make up five digits , requirement
1
1
1 The number of occurrences cannot exceed
2
2
2 Time , But there has to be ,
2
2
2 Not more than
1
1
1 Time ,
3
3
3 The most frequent occurrence
3
3
3 Time ,
4
4
4 Even number of times ,
Find the number of the above five digits ;
This is a solution Multiset arrangement The subject of , Use Exponential generating function ;
Altogether
5
5
5 A place , Use
1
,
2
,
3
,
4
1,2,3,4
1,2,3,4 To this
5
5
5 Fill in positions ,
Select a number to analyze :
1
1
1 No more than
2
2
2 Time , There must be , That is, it must be greater than
0
0
0 , Then the number that can be selected is
1
,
2
1,2
1,2 ,
2
2
2 No more than
1
1
1 Time , Optional number
0
,
1
0,1
0,1 ,
3
3
3 Emergence can achieve
3
3
3 Time , Number of selectable
0
,
1
,
2
,
3
0,1,2,3
0,1,2,3 ,
4
4
4 Even number of times , The optional number is
0
,
2
,
4
,
6
,
8
,
⋯
0, 2, 4, 6, 8, \cdots
0,2,4,6,8,⋯ , Pay attention to the total choice here
5
5
5 individual , When finally solving multiple sets , Mainly to see
x
5
x^5
x5 The former idempotent , So here's The optional number is... In a single factor
x
x
x Subidempotent , There is no need to exceed
5
5
5 , choice
0
,
2
,
4
0,2,4
0,2,4 that will do ;
According to the following model , Write the exponential generating function ;
Multiple sets
S
=
{
n
1
⋅
a
1
,
n
2
⋅
a
2
,
⋯
,
n
k
⋅
a
k
}
S=\{ n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k \}
S={ n1⋅a1,n2⋅a2,⋯,nk⋅ak}
Multiple sets
S
S
S Of
r
r
r Number of permutations Composition sequence
{
a
r
}
\{ a_r \}
{ ar} , The corresponding exponential generating function is :
G
e
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
f
n
k
(
x
)
G_e(x) = f_{n_1}(x) f_{n_2}(x) \cdots f_{n_k}(x)
Ge(x)=fn1(x)fn2(x)⋯fnk(x) *
Each generated function item
f
n
i
(
x
)
f_{n_i}(x)
fni(x) yes
f
n
i
(
x
)
=
1
+
x
+
x
2
2
!
+
⋯
+
x
n
i
n
i
!
f_{n_i}(x) = 1 + x + \cfrac{x^2}{2!} + \cdots + \cfrac{x^{n_i}}{n_i!}
fni(x)=1+x+2!x2+⋯+ni!xni *
take
G
e
(
x
)
G_e(x)
Ge(x) an , Among them
r
r
r The coefficient is the permutation number of multiple sets ; *
Writing of exponential generating function :
① Determine the number of generated function items : Number of element types in multiple sets
② Determine the number of items in the generated function item : Pick value Number ;
③ Itemized format :
x
n
n
!
\cfrac{x^n}{n!}
n!xn
④ Partial power : Pick value ;
All in all
4
4
4 Elements
1
,
2
,
3
,
4
1,2,3,4
1,2,3,4 , So the generating function is
4
4
4 Multiply the generated function items ;
1
1
1 The generating function item corresponding to the element :
- Pick value :
1
,
2
1,2
1,2
- final result :
x
1
1
!
+
x
2
2
!
=
x
+
x
2
2
!
\cfrac{x^1}{1!} + \cfrac{x^2}{2!} = x + \cfrac{x^2}{2!}
1!x1+2!x2=x+2!x2
2
2
2 The generating function item corresponding to the element :
- Pick value :
0
,
1
0,1
0,1
- final result :
x
0
0
!
+
x
1
1
!
=
1
+
x
\cfrac{x^0}{0!} + \cfrac{x^1}{1!} = 1 + x
0!x0+1!x1=1+x
3
3
3 The generating function item corresponding to the element :
- Pick value :
0
,
1
,
2
,
3
0,1,2,3
0,1,2,3
- final result :
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
x
3
3
!
=
1
+
x
+
x
2
2
!
+
x
3
3
!
\cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} = 1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!}
0!x0+1!x1+2!x2+3!x3=1+x+2!x2+3!x3
4
4
4 The generating function item corresponding to the element :
- Pick value :
0
,
2
,
4
,
6
,
⋯
0,2,4,6 , \cdots
0,2,4,6,⋯ , Only... Is selected here
5
5
5 individual , seek
x
x
x To the power of
5
5
5 The coefficient before , Here you only need to select
0
,
2
,
4
0 , 2, 4
0,2,4 that will do ,
5
5
5 The above number is completely unnecessary , You can ignore ;
- final result :
x
0
0
!
+
x
2
2
!
+
x
4
4
!
=
1
+
x
2
2
!
+
x
4
4
!
\cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} = 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!}
0!x0+2!x2+4!x4=1+2!x2+4!x4
Generate four of the above exponents Multiply the exponential generating function terms , To calculate the
x
5
x^5
x5 The coefficient before , Is the permutation number of multiple sets ;
G
e
(
x
)
=
(
x
+
x
2
2
!
)
(
1
+
x
)
(
1
+
x
+
x
2
2
!
+
x
3
3
!
)
(
1
+
x
2
2
!
+
x
4
4
!
)
G_e(x) = (x + \cfrac{x^2}{2!}) (1 + x) (1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!}) (1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!})
Ge(x)=(x+2!x2)(1+x)(1+x+2!x2+3!x3)(1+2!x2+4!x4)
=
x
+
5
x
2
2
!
+
18
x
3
3
!
+
64
x
4
4
!
+
215
x
5
5
!
⋯
\ \ \ \ \ \ \ \ \ \ \ \,= x + 5\cfrac{x^2}{2!} + 18\cfrac{x^3}{3!} + 64\cfrac{x^4}{4!} + 215\cfrac{x^5}{5!} \cdots
=x+52!x2+183!x3+644!x4+2155!x5⋯
Don't forget the back , among
x
5
x^5
x5 The item is
215
x
5
5
!
215\cfrac{x^5}{5!}
2155!x5 , Therefore, what is required in the title
5
5
5 The number of digits is
215
215
215 individual ;
边栏推荐
- Lesson 13 of the Blue Bridge Cup -- tree array and line segment tree [exercise]
- 2022-2028 global lithium battery copper foil industry research and trend analysis report
- AcWing 271. 杨老师的照相排列【多维DP】
- 2022-2028 global marking ink industry research and trend analysis report
- English语法_形容词/副词3级 - 倍数表达
- How to expand the capacity of golang slice slice
- Setinterval CPU intensive- Is setInterval CPU intensive?
- Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up
- Distributed task distribution framework gearman
- Sensor debugging process
猜你喜欢
Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up
网格图中递增路径的数目[dfs逆向路径+记忆dfs]
PHP MySQL inserts data
Computer graduation design PHP makeup sales Beauty shopping mall
Win32: dump file analysis of heap corruption
Install apache+php+mysql+phpmyadmin xampp and its error resolution
Class exercises
2022-2028 global plasmid DNA cdmo industry research and trend analysis report
The second largest gay dating website in the world was exposed, and the status of programmers in 2022
List的stream中Long对象与long判等问题记录
随机推荐
图像24位深度转8位深度
Kotlin的协程:上下文
[combinatorics] generating function (property summary | important generating function)*
English语法_形容词/副词3级 - 倍数表达
PHP MySQL reads data
2022-2028 global copper foil (thickness 12 μ M) industry research and trend analysis report
The second largest gay dating website in the world was exposed, and the status of programmers in 2022
网格图中递增路径的数目[dfs逆向路径+记忆dfs]
Sensor debugging process
Lesson 13 of the Blue Bridge Cup -- tree array and line segment tree [exercise]
[combinatorics] generating function (use generating function to solve the number of solutions of indefinite equation)
Distributed task distribution framework gearman
Keepalived setting does not preempt resources
Install apache+php+mysql+phpmyadmin xampp and its error resolution
【统信UOS】扫描仪设备管理驱动安装
Nodejs (01) - introductory tutorial
Ml (machine learning) softmax function to realize the classification of simple movie categories
2022-2028 global plasmid DNA cdmo industry research and trend analysis report
Use of unsafe class
[untitled]