当前位置:网站首页>2021 Huawei Cup Mathematical Modeling Contest E question - Ultra-Wideband (UWB) precise positioning problem under signal interference

2021 Huawei Cup Mathematical Modeling Contest E question - Ultra-Wideband (UWB) precise positioning problem under signal interference

2022-08-02 16:34:00 Zhi Zhao

一、背景

UWB(Ultra-Wideband)技术也被称之为“超宽带”,又称之为脉冲无线电技术.This is one that does not require any carrier,通过发送纳秒级脉冲而完成数据传输的短距离范围内无线通信技术,And the power consumption during the signal transmission process is only a few dozenµW.UWB因其独有的特点,使其在军事、There are broad applications in various fields such as the Internet of Things.其中,基于UWB的定位技术具备实时的室内外精确跟踪能力,定位精度高,可达到厘米级甚至毫米级定位.UWBAccurate positioning indoors will be an excellent complement to satellite navigation,可在军事及民用领域有广泛应用,比如:电力、医疗、化工行业、隧道施工、Hazardous area control, etc.
UWB的定位技术有多种方法,本文仅考虑基于飞行时间(Time of Flight, TOF)的测距原理,它是UWB定位法中最常见的定位方法之一.TOF测距技术属于双向测距技术,It calculates the time-of-flight of the signal between the two modules,再乘以光速求出两个模块之间的距离,There must be different degrees of this distance. There must be different degrees of error in this distance,但其精度已经比较高.
在室内定位的应用中,UWB技术可以实现厘米级的定位精度(一般指2维平面定位),And it has good anti-multipath interference and weakening performance and strong penetration ability.但由于室内环境复杂多变UWB 通信信号极易受到遮挡,虽然UWB技术具有穿透能力,但仍然会产生误差,under strong interference,数据会发生异常波动(通常是时间延时),基本无法完成室内定位,even cause serious accidents.因此,信号干扰下的超宽带(UWB)精确定位问题成为亟待解决的问题.

二、任务

任务1:数据预处理(清洗)
无论是信号无干扰下采集数据,或信号干扰下采集数据,Tag在同一坐标点上都采集多组数据(见附件1中648个数据文件),请用某种方法把每个数据文件相应数值抓取出来,并转换成二维表(矩阵)形式(txt、Excel或其他数据格式),每一行代表一组数据(即一个样品),然后对这些数据文件进行预处理(清洗),删除掉一些“无用”(异常、缺失、相同或相似)的数据(样品).经处理后,“正常数据”所有数据文件和“异常数据”所有数据文件最后各保留多少组(多少个样品)数据,并重点列出以下4个数据文件,经处理后保留的数据(矩阵形式);
“正常数据”文件夹中: 24.正常.txt、 109.正常.txt
“异常数据”文件夹中: 1.异常.txt、 100.异常.txt

任务2: 定位模型
利用任务1处理后的数据,分别对“正常数据”和“异常数据”,设计合适的数学模型(或算法),估计(或预测)出Tag的精确位置,并说明你所建立的定位模型(或算法)的有效性;同时请利用你的定位模型(或算法)分别对附件2中提供的前5组(信号无干扰)数据和后5组(信号有干扰)数据进行精确定位(3维坐标);
注意:(1)定位模型必须体现实验场景信息;
(2)请同时给出定位模型的3维(x,y,z)精度、2维(x,y)精度以及1维的各自精度.

任务3:不同场景应用
我们的训练数据仅采集于同一实验场景(实验场景1),但定位模型应该能够在不同实际场景上使用,我们希望你所建立的定位模型能够应用于不同场景.附件3中10组数据采集于下面实验场景2(前5组数据信号无干扰,后5组数据信号有干扰),请分别用上述建立的定位模型,对这10 组数据进行精确定位(3维坐标);
实验场景2:
靶点(Tag)范围:5000mm3000mm3000mm
锚点(anchor)位置(单位:mm):
A0(0,0,1200)、 A1(5000,0,1600)、
A2(0,3000,1600),A3(5000,3000,1200)

任务4: 分类模型
上述定位模型是在已知信号有、无干扰的条件下建立的,但UWB在采集数据时并不知道信号有无干扰,所以判断信号有无干扰是UWB精确定位问题的重点和难点.利用任务1处理后的数据,建立数学模型(或算法),以便区分哪些数据是在信号无干扰下采集的数据,哪些数据是在信号干扰下采集的数据?并说明你所建立的分类模型(或算法)的有效性;同时请用你所建立的分类模型(或算法)判断附件4中提供的10组数据(这10组数据同样采集于实验场景1)是来自信号无干扰或信号干扰下采集的?

任务5: 运动轨迹定位
运动轨迹定位是UWB重要应用之一,利用静态点的定位模型,加上靶点自身运动规律,希望给出动态靶点的运动轨迹.附件5是对动态靶点采集的数据(一段时间内连续采集的多组数据),请注意,在采集这些数据时,会随机出现信号干扰,请对这个运动轨迹进行精确定位,最终画出这条运动轨迹图(数据采集来自实验场景1).

三、任务分析

Task one analysis:
There are normal data and abnormal data324个文件,一共是648个文件,And the number of each file is Tag的一个位置,由于Tag在同一位置会停留一会儿时间,而锚点与Tag之间每0.2—0.3秒之间就会发送、接收信号一次,所以在同一位置点,UWB会采集到多组数据(多组数据都代表同一位置的信息),组数的多少视Tag在同一位置的时间而定,停留的时间越长,组数就越多.in each file,每4行(hang)为一组,表示UWB采集的一组完整数据(一组数据表示一个样品),In each set of data we only need to get the anchor points(A0,A1,A2,A3)到Tagdistance data.
Our goal is to get the anchor point to each fileTag的距离数据,Put a set of distance data on one line,Thus the distance data in a file can form a two-dimensional table(矩阵).
第一步获取数据,Take normal data in the file 1.正常 为例,利用MATLAB程序读取txt文件数据.

data = importdata("附件1:UWB数据集\正常数据\1.正常.txt");

在这里插入图片描述
1.Data in normal files is stored in data.data矩阵里,有6列,第三列就是Tag到4distance data for each anchor point,每4A set of data.
The form of converting the distance data in the above matrix into a two-dimensional matrix is ​​as follows:

A = data.data(:,3);
m = size(A,1);
n = m/4;
B = zeros(n,4);
for i = 1:n
    B(i,:) = A(1:4);
end

在这里插入图片描述
The above operations can be obtained by doing both normal data and abnormal data648个二维矩阵.
The following code can get normal data after running324个二维矩阵,对于异常数据,Just replace the path with :path = ‘F:\数学建模\2021年中国研究生数学建模竞赛赛题\2021年E题\附件1:UWB数据集\异常数据’;

path = 'F:\数学建模\2021年中国研究生数学建模竞赛赛题\2021年E题\附件1:UWB数据集\正常数据';   % Set the path of the folder where the data is stored
cd(path);                      % Change the current working directory to the specified folder,否则importdata无法读取文件
pathname = fullfile(path,'*.txt');   
file = dir(pathname);             % 显示文件夹下所有符合后缀名为.txt文件的完整信息
filenames = {
    file.name}';         % Extract the suffix named .txtThe filenames of all files,转换为n行1列的cell数据
k = size(filenames,1);            % txt文件的数量

C = cell(k,1);     % 创建一个元胞数组
for i=1:k
    name = filenames{
    i};          % 读取第i个变量名
    data = importdata(name);  % 导入数据,importdata读取当前工作目录下的文件
    A = data.data(:,3);
    m = size(A,1);
    n = m/4;
    B = zeros(n,4);
    for j = 1:n
        B(j,:) = A(1:4);
    end
    C{
    i,1} = B;     % Store all 2D matrices in cell arrays
end

第二步,对获取到的648A two-dimensional matrix is ​​preprocessed(清洗),删除掉一些“无用”(异常、缺失、相同或相似)的数据(样品).We will process each two-dimensional matrix,The size of the matrix can be reduced.

The key is data cleaning,我觉得比较麻烦,暂时没想到更好的方法,This will make follow-up work inconvenient,Everyone is welcome to solve this problem with me.
I think there are 2D matrices in here"无用数据"The reason is that some data are out of range of the target,靶点(Tag)范围:5000mm3000mm3000mm
.

第三步,列出“正常数据”所有数据文件和“异常数据”所有数据文件最后各保留多少组(多少个样品)数据,And focus on what is specified in the task4个数据文件,经处理后保留的数据(矩阵形式).

Task two analysis:
Using machine learning algorithms, the normal data and abnormal data are respectively established to establish a localization model,The positioning accuracy of the test model can be used 附件1:UWB数据集中Tag坐标信息.txtfile data to illustrate the effectiveness of the localization model,And then with the help of the positioning model to the attachment2中提供的前5组(信号无干扰)数据和后5组(信号有干扰)数据进行精确定位(3维坐标).
Take normal data as an example,First, the dataset is as follows3:1的比例划分为训练集和测试集,The training set is used to train the localization model,The test set is used to verify the accuracy of the model.This article uses SutraPSO改进后的BPneural network to achieve the pairTag的定位,在训练阶段,将锚点(A0,A1,A2,A3)到Tagdistance data as input,TagThe actual position coordinates are output as output,This trains a localization model;在测试阶段,Input the distance data from the test set to the model,The output data is obtainedTagThe predicted location coordinates of .Compare the predicted location coordinates with the actual location coordinates,The positioning accuracy of the model can be obtained.

Task three analysis:
The third task is to use the established localization models of normal data and abnormal data to analyze the experimental scene respectively2(前5组数据信号无干扰,后5组数据信号有干扰)的10组数据进行精确定位.The essence is to test the generalization performance of the model.

Task four analysis:
利用任务1The processed data is used to build a classification model,Thereby, it is judged that the data is collected without signal interference or signal interference.
After the processing of task one,Each data file is a two-dimensional matrix,similar to an image,We can turn this task into an image recognition problem,A binary classification model is trained using normal data and abnormal data,And test the classification accuracy of the model,Finally, the model is used for judgmentUWBThere is no signal interference when collecting data.

Task five analysis

......未完待续,The specific methods and codes involved in the above task analysis will be supplemented later.

参考文献

[1] 缪希仁, Fan Jianwei, 江 灏, 等. 基站异常情况下基于改进极限学习机的超宽带室内定位方法[J], 传感技术学报, 2020, 33(10):1457-1466.
[2] 梁 丰, 熊 凌. 基于GA-BPNeural Networks for Mobile RobotsUWB室内定位[J]. 微电子学与计算机, 2019, 36(4):33-42.

原网站

版权声明
本文为[Zhi Zhao]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/214/202208021406258076.html