当前位置:网站首页>[mathematical logic] predicate logic (judge whether the first-order predicate logic formula is true or false | explain | example | predicate logic formula type | forever true | forever false | satisfi
[mathematical logic] predicate logic (judge whether the first-order predicate logic formula is true or false | explain | example | predicate logic formula type | forever true | forever false | satisfi
2022-07-03 03:53:00 【Programmer community】
List of articles
- One 、 Judge whether the predicate logic formula is true or false ( semantics )
- Two 、 Predicate logic " explain "
- 3、 ... and 、 Predicate logic " explain " Example
- Four 、 Predicate logic formula type
One 、 Judge whether the predicate logic formula is true or false ( semantics )
Predicate logic grammar And semantics :
grammar : The above two sections explain Predicate logic Formula , how Write the formula according to the statement , yes grammar Category ;
semantics : How about the formula written Determine whether it is true or false , Belong to semantics Category ;
Determine whether the formula is true or false :
- Propositional logic : In propositional logic , By assigning values to propositional arguments , And calculate according to the rules of connectives , Finally get the true value , This process is called assignment ;
- First order predicate logic : In first-order predicate logic , Use “ explain ” Method , Determine whether a formula is true or false ;
Two 、 Predicate logic “ explain ”
explain :
Given Predicate logic The formula
A
A
A , The formula
A
A
A from Individual words , The predicate , quantifiers form ;
Individual domain : Appoint The formula
A
A
A Of Individual domain by It is known that Individual domain
D
D
D ;
Individual words : Use specific Individual constant yuan replace
A
A
A Medium Individual words ;
function : Use Specific functions , replace
A
A
A Medium Function arguments ;
The predicate : Use specific The predicate , replace
A
A
A Medium Predicate argument ;
After performing the above operations , You can get
A
A
A One of the formulas “ explain ” ;
assignment And explain :
assignment : assignment yes For propositional logic Propositional argument take
0
,
1
0 , 1
0,1 True or false ;
explain : explain yes to Individual words In the individual domain Specify which individual , to The predicate Specify a specific nature or relationship , to quantifiers Appoint Individual domain Determine its scope , To determine the Individual words , The predicate , quantifiers , You can determine the truth of the formula ;
Given a Predicate logic The formula , Give a explain , Can Determine whether it is true or false ;
The same Predicate logic The formula , There can be Different interpretations ;
- individual Appoint Different individual
- The predicate Appoint Different Nature or relationship
- quantifiers Use different Individual domain Explain ;
3、 ... and 、 Predicate logic “ explain ” Example
Given First order predicate logic The formula
A
A
A by
∀
x
(
F
(
x
)
→
G
(
x
)
)
\forall x ( F(x) \to G(x) )
∀x(F(x)→G(x)) , There are several explanations ;
Explain a :
Individual domain : Set of real numbers ;
F
(
x
)
F(x)
F(x) :
x
x
x It's a reasonable number ;
G
(
x
)
G(x)
G(x) :
x
x
x It's a score ;
At this point, the formula
A
A
A It can be explained as : Rational numbers can be expressed as fractions ;
At this time, the corresponding proposition of this explanation is True proposition ;
Explain two :
Individual domain : Total individual domain ;
F
(
x
)
F(x)
F(x) :
x
x
x Is the person ;
G
(
x
)
G(x)
G(x) :
x
x
x Hair is black ;
At this point, the formula
A
A
A It can be explained as : Everyone has black hair ;
At this time, the corresponding proposition of this explanation is False proposition ;
Four 、 Predicate logic formula type
Predicate logic The formula , With the explanation , You can judge the type of formula ;
Predicate logic Formula types are divided into Yongzhen style , Permanent falsehood , Satisfiability , Equivalent formula etc. ;
- Yongzhen style : The formula
A
A
A stay Any explanation is true ;
- Permanent falsehood : The formula
A
A
A stay Any explanation is false ;
- Satisfiability : The formula
A
A
A There is at least one true explanation ;
- Equivalency : If
A
B
A \leftrightarrow B
A
A
A and
B
B
B Is equivalent , Write it down as
A
⇔
B
A \Leftrightarrow B
A⇔B , call
A
⇔
B
A \Leftrightarrow B
A⇔B Is equivalent ;
AB It's Yongzhen style , The formula
边栏推荐
- Ansible introduction [unfinished (semi-finished products)]
- pytorch怎么下载?pytorch在哪里下载?
- Recursive use and multi-dimensional array object to one-dimensional array object
- Wechat applet + Alibaba IOT platform + Hezhou air724ug build a serverless IOT system (III) -- wechat applet is directly connected to Alibaba IOT platform aliiot
- 2022 tea master (primary) examination questions and tea master (primary) examination question bank
- Use of sigaction
- 【学习笔记】seckill-秒杀项目--(11)项目总结
- Mongodb installation & Deployment
- [Blue Bridge Road -- bug free code] interpretation of some codes of matrix keyboard
- For instruction, uploading pictures and display effect optimization of simple wechat applet development
猜你喜欢

QQ小程序开发之 一些前期准备:预约开发账号、下载安装开发者工具、创建qq小程序

MySQL MAC download and installation tutorial

2022 tea master (primary) examination questions and tea master (primary) examination question bank

Is pytorch open source?

Summary of electromagnetic spectrum

2022 polymerization process examination questions and polymerization process examination skills

第十届中国云计算大会·中国站:展望未来十年科技走向

简易版 微信小程序开发之页面跳转、数据绑定、获取用户信息、获取用户位置信息

递归:快速排序,归并排序和堆排序

leetcode:动态规划模板
随机推荐
Download and install node, NPM and yarn
In Net 6 project using startup cs
MongoDB簡介
nodejs基础:浅聊url和querystring模块
简易版 微信小程序开发之页面跳转、数据绑定、获取用户信息、获取用户位置信息
Half of 2022 is over, so we must hurry up
Cnopendata China Customs Statistics
[daily question] dichotomy - find a single dog (Bushi)
释放数据力量的Ceph-尚文网络xUP楠哥
Introduction à mongodb
没有sXid,suid&sgid将进入险境!-尚文网络xUP楠哥
npm : 无法将“npm”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。
[combinatorics] basic counting principle (addition principle | multiplication principle)
Message queue addition failure
The latest analysis of the main principals of hazardous chemical business units in 2022 and the simulated examination questions of the main principals of hazardous chemical business units
如何迈向IPv6之IPv6过渡技术-尚文网络奎哥
Wechat applet + Alibaba IOT platform + Hezhou air724ug build a serverless IOT system (III) -- wechat applet is directly connected to Alibaba IOT platform aliiot
Bisher - based on SSM pet adoption center
ffmpeg下载安装教程及介绍
【DRM】DRM bridge驱动调用流程简单分析