当前位置:网站首页>[mathematical logic] predicate logic (judge whether the first-order predicate logic formula is true or false | explain | example | predicate logic formula type | forever true | forever false | satisfi
[mathematical logic] predicate logic (judge whether the first-order predicate logic formula is true or false | explain | example | predicate logic formula type | forever true | forever false | satisfi
2022-07-03 03:53:00 【Programmer community】
List of articles
- One 、 Judge whether the predicate logic formula is true or false ( semantics )
- Two 、 Predicate logic " explain "
- 3、 ... and 、 Predicate logic " explain " Example
- Four 、 Predicate logic formula type
One 、 Judge whether the predicate logic formula is true or false ( semantics )
Predicate logic grammar And semantics :
grammar : The above two sections explain Predicate logic Formula , how Write the formula according to the statement , yes grammar Category ;
semantics : How about the formula written Determine whether it is true or false , Belong to semantics Category ;
Determine whether the formula is true or false :
- Propositional logic : In propositional logic , By assigning values to propositional arguments , And calculate according to the rules of connectives , Finally get the true value , This process is called assignment ;
- First order predicate logic : In first-order predicate logic , Use “ explain ” Method , Determine whether a formula is true or false ;
Two 、 Predicate logic “ explain ”
explain :
Given Predicate logic The formula
A
A
A , The formula
A
A
A from Individual words , The predicate , quantifiers form ;
Individual domain : Appoint The formula
A
A
A Of Individual domain by It is known that Individual domain
D
D
D ;
Individual words : Use specific Individual constant yuan replace
A
A
A Medium Individual words ;
function : Use Specific functions , replace
A
A
A Medium Function arguments ;
The predicate : Use specific The predicate , replace
A
A
A Medium Predicate argument ;
After performing the above operations , You can get
A
A
A One of the formulas “ explain ” ;
assignment And explain :
assignment : assignment yes For propositional logic Propositional argument take
0
,
1
0 , 1
0,1 True or false ;
explain : explain yes to Individual words In the individual domain Specify which individual , to The predicate Specify a specific nature or relationship , to quantifiers Appoint Individual domain Determine its scope , To determine the Individual words , The predicate , quantifiers , You can determine the truth of the formula ;
Given a Predicate logic The formula , Give a explain , Can Determine whether it is true or false ;
The same Predicate logic The formula , There can be Different interpretations ;
- individual Appoint Different individual
- The predicate Appoint Different Nature or relationship
- quantifiers Use different Individual domain Explain ;
3、 ... and 、 Predicate logic “ explain ” Example
Given First order predicate logic The formula
A
A
A by
∀
x
(
F
(
x
)
→
G
(
x
)
)
\forall x ( F(x) \to G(x) )
∀x(F(x)→G(x)) , There are several explanations ;
Explain a :
Individual domain : Set of real numbers ;
F
(
x
)
F(x)
F(x) :
x
x
x It's a reasonable number ;
G
(
x
)
G(x)
G(x) :
x
x
x It's a score ;
At this point, the formula
A
A
A It can be explained as : Rational numbers can be expressed as fractions ;
At this time, the corresponding proposition of this explanation is True proposition ;
Explain two :
Individual domain : Total individual domain ;
F
(
x
)
F(x)
F(x) :
x
x
x Is the person ;
G
(
x
)
G(x)
G(x) :
x
x
x Hair is black ;
At this point, the formula
A
A
A It can be explained as : Everyone has black hair ;
At this time, the corresponding proposition of this explanation is False proposition ;
Four 、 Predicate logic formula type
Predicate logic The formula , With the explanation , You can judge the type of formula ;
Predicate logic Formula types are divided into Yongzhen style , Permanent falsehood , Satisfiability , Equivalent formula etc. ;
- Yongzhen style : The formula
A
A
A stay Any explanation is true ;
- Permanent falsehood : The formula
A
A
A stay Any explanation is false ;
- Satisfiability : The formula
A
A
A There is at least one true explanation ;
- Equivalency : If
A
B
A \leftrightarrow B
A
A
A and
B
B
B Is equivalent , Write it down as
A
⇔
B
A \Leftrightarrow B
A⇔B , call
A
⇔
B
A \Leftrightarrow B
A⇔B Is equivalent ;
AB It's Yongzhen style , The formula
边栏推荐
- Shardingsphere dynamic data source
- PHP generates PDF tcpdf
- Dynamic programming: longest common substring and longest common subsequence
- How to download pytorch? Where can I download pytorch?
- MySQL MAC download and installation tutorial
- 105. SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
- Nanning water leakage detection: warmly congratulate Guangxi Zhongshui on winning the first famous brand in Guangxi
- Bid farewell to artificial mental retardation: Mengzi open source project team received RMB 100 million financing to help NLP develop
- How to execute a swift for in loop in one step- How can I do a Swift for-in loop with a step?
- Cnopendata China Customs Statistics
猜你喜欢

105. SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍

Applet get user avatar and nickname

TCP, the heavyweight guest in tcp/ip model -- Kuige of Shangwen network

编译文件时报错:错误: 编码GBK的不可映射字符

PHP generates PDF tcpdf

navicat 导出数据库的表结构

2022deepbrainchain biweekly report no. 104 (01.16-02.15)
![Mongodb replication set [master-slave replication]](/img/2c/8030548455f45fa252062dd90e7b8b.png)
Mongodb replication set [master-slave replication]

Mysql Mac版下载安装教程

【刷题篇】 找出第 K 小的数对距离
随机推荐
Separable bonds and convertible bonds
Hutool动态添加定时任务
在写web项目的时候,文件上传用到了smartupload,用了new string()进行转码,但是在数据库中,还是会出现类似扑克的乱码
105. Detailed introduction of linkage effect realization of SAP ui5 master detail layout mode
nodejs基础:浅聊url和querystring模块
[mathematical logic] propositional logic (equivalent calculus | idempotent law | exchange law | combination law | distribution law | De Morgan law | absorption rate | zero law | identity | exclusion l
Half of 2022 is over, so we must hurry up
在 .NET 6 项目中使用 Startup.cs
Is pytorch difficult to learn? How to learn pytorch well?
SAP UI5 应用开发教程之一百零五 - SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
pytorch怎么下载?pytorch在哪里下载?
CEPH Shangwen network xUP Nange that releases the power of data
【刷题篇】多数元素(超级水王问题)
Bisher - based on SSM pet adoption center
pytorch是什么?pytorch是一个软件吗?
Recursion: one dimensional linked lists and arrays
Docker install and start MySQL service
Makefile demo
NPM: the 'NPM' item cannot be recognized as the name of a cmdlet, function, script file, or runnable program. Please check the spelling of the name. If the path is included, make sure the path is corr
ffmpeg录制屏幕和截屏