当前位置:网站首页>[mathematical logic] predicate logic (judge whether the first-order predicate logic formula is true or false | explain | example | predicate logic formula type | forever true | forever false | satisfi
[mathematical logic] predicate logic (judge whether the first-order predicate logic formula is true or false | explain | example | predicate logic formula type | forever true | forever false | satisfi
2022-07-03 03:53:00 【Programmer community】
List of articles
- One 、 Judge whether the predicate logic formula is true or false ( semantics )
- Two 、 Predicate logic " explain "
- 3、 ... and 、 Predicate logic " explain " Example
- Four 、 Predicate logic formula type
One 、 Judge whether the predicate logic formula is true or false ( semantics )
Predicate logic grammar And semantics :
grammar : The above two sections explain Predicate logic Formula , how Write the formula according to the statement , yes grammar Category ;
semantics : How about the formula written Determine whether it is true or false , Belong to semantics Category ;
Determine whether the formula is true or false :
- Propositional logic : In propositional logic , By assigning values to propositional arguments , And calculate according to the rules of connectives , Finally get the true value , This process is called assignment ;
- First order predicate logic : In first-order predicate logic , Use “ explain ” Method , Determine whether a formula is true or false ;
Two 、 Predicate logic “ explain ”
explain :
Given Predicate logic The formula
A
A
A , The formula
A
A
A from Individual words , The predicate , quantifiers form ;
Individual domain : Appoint The formula
A
A
A Of Individual domain by It is known that Individual domain
D
D
D ;
Individual words : Use specific Individual constant yuan replace
A
A
A Medium Individual words ;
function : Use Specific functions , replace
A
A
A Medium Function arguments ;
The predicate : Use specific The predicate , replace
A
A
A Medium Predicate argument ;
After performing the above operations , You can get
A
A
A One of the formulas “ explain ” ;
assignment And explain :
assignment : assignment yes For propositional logic Propositional argument take
0
,
1
0 , 1
0,1 True or false ;
explain : explain yes to Individual words In the individual domain Specify which individual , to The predicate Specify a specific nature or relationship , to quantifiers Appoint Individual domain Determine its scope , To determine the Individual words , The predicate , quantifiers , You can determine the truth of the formula ;
Given a Predicate logic The formula , Give a explain , Can Determine whether it is true or false ;
The same Predicate logic The formula , There can be Different interpretations ;
- individual Appoint Different individual
- The predicate Appoint Different Nature or relationship
- quantifiers Use different Individual domain Explain ;
3、 ... and 、 Predicate logic “ explain ” Example
Given First order predicate logic The formula
A
A
A by
∀
x
(
F
(
x
)
→
G
(
x
)
)
\forall x ( F(x) \to G(x) )
∀x(F(x)→G(x)) , There are several explanations ;
Explain a :
Individual domain : Set of real numbers ;
F
(
x
)
F(x)
F(x) :
x
x
x It's a reasonable number ;
G
(
x
)
G(x)
G(x) :
x
x
x It's a score ;
At this point, the formula
A
A
A It can be explained as : Rational numbers can be expressed as fractions ;
At this time, the corresponding proposition of this explanation is True proposition ;
Explain two :
Individual domain : Total individual domain ;
F
(
x
)
F(x)
F(x) :
x
x
x Is the person ;
G
(
x
)
G(x)
G(x) :
x
x
x Hair is black ;
At this point, the formula
A
A
A It can be explained as : Everyone has black hair ;
At this time, the corresponding proposition of this explanation is False proposition ;
Four 、 Predicate logic formula type
Predicate logic The formula , With the explanation , You can judge the type of formula ;
Predicate logic Formula types are divided into Yongzhen style , Permanent falsehood , Satisfiability , Equivalent formula etc. ;
- Yongzhen style : The formula
A
A
A stay Any explanation is true ;
- Permanent falsehood : The formula
A
A
A stay Any explanation is false ;
- Satisfiability : The formula
A
A
A There is at least one true explanation ;
- Equivalency : If
A
B
A \leftrightarrow B
A
A
A and
B
B
B Is equivalent , Write it down as
A
⇔
B
A \Leftrightarrow B
A⇔B , call
A
⇔
B
A \Leftrightarrow B
A⇔B Is equivalent ;
AB It's Yongzhen style , The formula
边栏推荐
- Docker install and start MySQL service
- Reflection and planning of a sophomore majoring in electronic information engineering
- 2022年已过半,得抓紧
- Wechat applet + Alibaba IOT platform + Hezhou air724ug built with server version system analysis
- [mathematical logic] propositional logic (equivalent calculus | idempotent law | exchange law | combination law | distribution law | De Morgan law | absorption rate | zero law | identity | exclusion l
- 递归:一维链表和数组
- Advanced redis applications [password protection, data persistence, master-slave synchronization, sentinel mode, transactions] [not completed yet (semi-finished products)]
- Hutool dynamically adds scheduled tasks
- TCP/IP模型中的重磅嘉宾TCP--尚文网络奎哥
- [Blue Bridge Road -- bug free code] DS18B20 temperature reading code analysis
猜你喜欢
Captura下载安装及在Captura配置FFmpeg
What can learning pytorch do?
Cnopendata China Customs Statistics
Applet get user avatar and nickname
[Apple Photo Album push] IMessage group anchor local push
pytorch开源吗?
How to download pytorch? Where can I download pytorch?
Hutool dynamically adds scheduled tasks
ffmpeg下载安装教程及介绍
Role of JS No
随机推荐
【DRM】DRM bridge驱动调用流程简单分析
错误 C2694 “void Logger::log(nvinfer1::ILogger::Severity,const char *)”: 重写虚函数的限制性异常规范比基类虚成员函数
2022年已过半,得抓紧
学会pytorch能干什么?
[combinatorics] basic counting principle (addition principle | multiplication principle)
[Apple Photo Album push] IMessage group anchor local push
动态规划:最长回文子串和子序列
Introduction to mongodb
[combinatorics] brief introduction to generating function (definition of generating function | Newton binomial coefficient | commonly used generating function | correlation with constant | correlation
Dynamic programming: Longest palindrome substring and subsequence
golang xxx. Go code template
pytorch怎么下载?pytorch在哪里下载?
[embedded module] OLED display module
Mysql Mac版下载安装教程
Numpy warning visibledeprecationwarning: creating an ndarray from ragged needed sequences
Introduction à mongodb
PHP generates PDF tcpdf
SAP ui5 application development tutorial 105 - detailed introduction to the linkage effect implementation of SAP ui5 master detail layout mode
The latest analysis of the main principals of hazardous chemical business units in 2022 and the simulated examination questions of the main principals of hazardous chemical business units
2022 P cylinder filling examination content and P cylinder filling practice examination video