当前位置:网站首页>[mathematical logic] propositional logic (judgment of the correctness of propositional logic reasoning | formal structure is eternal truth - equivalent calculus | deduction from premise - logical reas
[mathematical logic] propositional logic (judgment of the correctness of propositional logic reasoning | formal structure is eternal truth - equivalent calculus | deduction from premise - logical reas
2022-07-03 03:40:00 【Programmer community】
List of articles
- One 、 Judgment of the correctness of propositional logic reasoning
- Two 、 The formal structure is forever true ( Equivalent calculus )
- 3、 ... and 、 Deduce the conclusion from the premise ( logical reasoning )
One 、 Judgment of the correctness of propositional logic reasoning
Propositional reasoning , according to Premise , Reasoning out Conclusion ;
Such as :
Premise : yes
p
→
(
q
→
r
)
p \to (q \to r)
p→(q→r) ,
p
p
p ,
q
q
q ;
Conclusion : yes
r
r
r
How to judge according to the above premise , The reasoning conclusion is correct ?
The law of reasoning :
A
,
B
A,B
A,B There are two propositions , If
A
→
B
A \to B
A→B It's Yongzhen style , that
A
⇒
B
A \Rightarrow B
A⇒B ;
The formal structure of reasoning
Premise :
A
1
,
A
2
,
⋯
,
A
k
A_1 , A_2 , \cdots , A_k
A1,A2,⋯,Ak
Conclusion :
B
B
B
The formal structure of reasoning is :
(
A
1
∧
A
2
∧
⋯
∧
A
k
)
→
B
(A_1 \land A_2 \land \cdots \land A_k) \to B
(A1∧A2∧⋯∧Ak)→B
Propositional logic The correctness of reasoning determine , There are two ways ;
Method 1 : Write inferential Formal structure , Check whether the formal structure of the reasoning is Yongzhen style ; If it is Yongzhen , Then the reasoning is correct ;
Method 2 : from Premise Deduce Conclusion , according to Equivalence calculus rules , Rules of reasoning , Make a deduction ;
Two 、 The formal structure is forever true ( Equivalent calculus )
Equivalent calculus reference blog : 【 Mathematical logic 】 Propositional logic ( Equivalent calculus | Idempotent law | Commutative law | Associative law | Distributive law | De Morgan law | absorptivity | Law of zero | The same thing | The law of excluded middle | Law of contradiction | Double negative rate | Implication equivalence … )
Premise :
p
→
(
q
→
r
)
p \to (q \to r)
p→(q→r) ,
p
p
p ,
q
q
q ;
Conclusion :
r
r
r
The formal structure of reasoning is :
(
p
→
(
q
→
r
)
)
∧
p
∧
q
→
r
(p \to (q \to r)) \land p \land q \to r
(p→(q→r))∧p∧q→r
Use Equivalent calculus Methods , Verify whether the above formal structure is Yongzhen style ;
Connective The priority for :“
¬
\lnot
¬” Greater than “
∧
,
∨
\land , \lor
∧,∨” Greater than “
→
,
\to, \leftrightarrow
→,” ; Start with the higher priority ;
(
p
→
(
q
→
r
)
)
∧
p
∧
q
→
r
(p \to (q \to r)) \land p \land q \to r
(p→(q→r))∧p∧q→r
Implication equivalence : Use Implication equivalence The rules , Put the above
(
p
→
(
q
→
r
)
)
(p \to (q \to r))
(p→(q→r)) Perform equivalent calculus :
⇔
(
¬
p
∨
(
¬
q
∨
r
)
)
∧
p
∧
q
→
r
\Leftrightarrow (\lnot p \lor (\lnot q \lor r)) \land p \land q \to r
⇔(¬p∨(¬q∨r))∧p∧q→r
Distribution rate : according to Distribution rate , Calculation
(
¬
p
∨
(
¬
q
∨
r
)
)
∧
p
(\lnot p \lor (\lnot q \lor r)) \land p
(¬p∨(¬q∨r))∧p part :
⇔
(
(
¬
p
∧
p
)
∨
(
(
¬
q
∨
r
)
∧
p
)
)
∧
q
→
r
\Leftrightarrow (( \lnot p \land p ) \lor ( (\lnot q \lor r) \land p ) ) \land q \to r
⇔((¬p∧p)∨((¬q∨r)∧p))∧q→r
Law of contradiction : among according to Law of contradiction You know ,
¬
p
∧
p
⇔
0
\lnot p \land p \Leftrightarrow 0
¬p∧p⇔0 :
⇔
(
0
∨
(
(
¬
q
∨
r
)
∧
p
)
)
∧
q
→
r
\Leftrightarrow ( 0 \lor ( (\lnot q \lor r) \land p ) ) \land q \to r
⇔(0∨((¬q∨r)∧p))∧q→r
The same thing : according to The same thing ,
0
∨
(
(
¬
q
∨
r
)
∧
p
)
0 \lor ( (\lnot q \lor r) \land p )
0∨((¬q∨r)∧p) And
(
¬
q
∨
r
)
∧
p
(\lnot q \lor r) \land p
(¬q∨r)∧p It is equivalent. :
⇔
(
(
¬
q
∨
r
)
∧
p
)
∧
q
→
r
\Leftrightarrow ( (\lnot q \lor r) \land p ) \land q \to r
⇔((¬q∨r)∧p)∧q→r
Associative law : according to Associative law , To recombine
(
(
¬
q
∨
r
)
∧
p
)
∧
q
( (\lnot q \lor r) \land p ) \land q
((¬q∨r)∧p)∧q by
(
(
¬
q
∨
r
)
∧
q
)
∧
p
( (\lnot q \lor r) \land q ) \land p
((¬q∨r)∧q)∧p :
⇔
(
(
¬
q
∨
r
)
∧
q
)
∧
p
→
r
\Leftrightarrow ( (\lnot q \lor r) \land q ) \land p \to r
⇔((¬q∨r)∧q)∧p→r
Distribution rate : according to Distribution rate , Calculation
(
¬
q
∨
r
)
∧
q
(\lnot q \lor r) \land q
(¬q∨r)∧q , The result is
(
¬
q
∧
q
)
∨
(
r
∧
q
)
(\lnot q \land q) \lor (r \land q)
(¬q∧q)∨(r∧q)
⇔
(
(
¬
q
∧
q
)
∨
(
r
∧
q
)
)
∧
p
→
r
\Leftrightarrow ( (\lnot q \land q) \lor (r \land q) ) \land p \to r
⇔((¬q∧q)∨(r∧q))∧p→r
Law of contradiction : according to Law of contradiction Calculation
¬
q
∧
q
\lnot q \land q
¬q∧q , As a result,
0
0
0 :
⇔
(
0
∨
(
r
∧
q
)
)
∧
p
→
r
\Leftrightarrow ( 0 \lor (r \land q) ) \land p \to r
⇔(0∨(r∧q))∧p→r
The same thing : According to the same ,
0
∨
(
r
∧
q
)
0 \lor (r \land q)
0∨(r∧q) Equivalent to
(
r
∧
q
)
(r \land q)
(r∧q) :
⇔
(
r
∧
q
)
∧
p
→
r
\Leftrightarrow (r \land q) \land p \to r
⇔(r∧q)∧p→r
Connective priority :
(
r
∧
q
)
∧
p
(r \land q) \land p
(r∧q)∧p in , The conjunctions have the same priority , Brackets can be deleted , Put three propositions in a bracket ;
⇔
(
r
∧
q
∧
p
)
→
r
\Leftrightarrow (r \land q \land p ) \to r
⇔(r∧q∧p)→r
Implication equivalence : according to Implication equivalence , elimination Implicative connectives
→
\to
→ :
⇔
¬
(
r
∧
q
∧
p
)
∨
r
\Leftrightarrow \lnot (r \land q \land p) \lor r
⇔¬(r∧q∧p)∨r
De Morgan law : according to De Morgan law , Assign a negative sign in parentheses ;
⇔
(
¬
r
∨
¬
q
∨
¬
p
)
∨
r
\Leftrightarrow (\lnot r \lor \lnot q \lor \lnot p ) \lor r
⇔(¬r∨¬q∨¬p)∨r
Connective priority :
(
¬
r
∨
¬
q
∨
¬
p
)
∨
r
(\lnot r \lor \lnot q \lor \lnot p ) \lor r
(¬r∨¬q∨¬p)∨r in , The conjunctions have the same priority , Brackets can be deleted , Put three propositions in a bracket ;
⇔
¬
r
∨
¬
q
∨
¬
p
∨
r
\Leftrightarrow \lnot r \lor \lnot q \lor \lnot p \lor r
⇔¬r∨¬q∨¬p∨r
The law of excluded middle : According to the law of exclusion ,
¬
r
∨
r
\lnot r \lor r
¬r∨r And
1
1
1 Equivalent ;
⇔
1
∨
¬
q
∨
¬
p
\Leftrightarrow 1 \lor \lnot q \lor \lnot p
⇔1∨¬q∨¬p
Law of zero : According to the zero law ,
1
1
1 Extract any value , Are equivalent to
1
1
1 :
⇔
1
\Leftrightarrow 1
⇔1
3、 ... and 、 Deduce the conclusion from the premise ( logical reasoning )
Logical reasoning reference blog : 【 Mathematical logic 】 Propositional logic ( Propositional logic inference | The formal structure of reasoning | The law of reasoning | Additional law | The law of simplification | Hypothetical reasoning | Reject | Disjunctive syllogism | Hypothetical syllogism | Equivalent syllogism | constructive dilemma )
Premise :
p
→
(
q
→
r
)
p \to (q \to r)
p→(q→r) ,
p
p
p ,
q
q
q ;
Conclusion :
r
r
r
Connect the prerequisites with conjunctive connectives ,
(
p
→
(
q
→
r
)
)
∧
p
∧
q
(p \to (q \to r)) \land p \land q
(p→(q→r))∧p∧q , Perform equivalent calculus , To calculate the
r
r
r ;
(
p
→
(
q
→
r
)
)
∧
p
∧
q
(p \to (q \to r)) \land p \land q
(p→(q→r))∧p∧q
Equivalent calculus Associative law :
⇔
(
(
p
→
(
q
→
r
)
)
∧
p
)
∧
q
\Leftrightarrow ((p \to (q \to r)) \land p) \land q
⇔((p→(q→r))∧p)∧q
logical reasoning Hypothetical reasoning :
(
A
→
B
)
∧
A
⇒
B
( A \to B ) \land A \Rightarrow B
(A→B)∧A⇒B , So from
(
p
→
(
q
→
r
)
)
∧
p
(p \to (q \to r)) \land p
(p→(q→r))∧p It can be inferred that
q
→
r
q \to r
q→r ;
⇒
(
q
→
r
)
∨
q
\Rightarrow (q \to r) \lor q
⇒(q→r)∨q
logical reasoning Hypothetical reasoning :
(
A
→
B
)
∧
A
⇒
B
( A \to B ) \land A \Rightarrow B
(A→B)∧A⇒B , So from
(
q
→
r
)
∨
q
(q \to r) \lor q
(q→r)∨q It can be inferred that
r
r
r ;
⇒
r
\Rightarrow r
⇒r
logical reasoning Than Equivalent calculus fast , Equivalent calculus is more intuitive , Logical reasoning needs to choose the appropriate reasoning law ;
边栏推荐
- 简易版 微信小程序开发之for指令、上传图片及展示效果优化
- js中#号的作用
- Summary of matrix knowledge points in Chapter 2 of Linear Algebra (Jeff's self perception)
- 【DRM】DRM bridge驱动调用流程简单分析
- Small guide for rapid formation of manipulator (VIII): kinematic modeling (standard DH method)
- Advanced redis applications [password protection, data persistence, master-slave synchronization, sentinel mode, transactions] [not completed yet (semi-finished products)]
- @The difference between Autowired, @qualifier, @resource
- Makefile demo
- Tidal characteristics of the Bohai Sea and the Yellow Sea
- Hi3536c v100r001c02spc040 cross compiler installation
猜你喜欢

docker安装及启动mysql服务

LVGL使用心得

MySQL MAC download and installation tutorial

Without sxid, suid & sgid will be in danger- Shangwen network xUP Nange

没有sXid,suid&sgid将进入险境!-尚文网络xUP楠哥

Bid farewell to artificial mental retardation: Mengzi open source project team received RMB 100 million financing to help NLP develop

MongoDB安装 & 部署

Mongodb installation & Deployment
![[MySQL] the difference between left join, right join and join](/img/d4/8684cd59cd1bd77e70bd4d7c7074c3.jpg)
[MySQL] the difference between left join, right join and join

QQ小程序开发之 一些前期准备:预约开发账号、下载安装开发者工具、创建qq小程序
随机推荐
[AI practice] Application xgboost Xgbregressor builds air quality prediction model (I)
Ansible简介【暂未完成(半成品)】
The difference between static web pages and dynamic web pages & the difference between Web1.0 and Web2.0 & the difference between get and post
How to move towards IPv6: IPv6 Transition Technology - Shangwen network quigo
[mathematical logic] predicate logic (individual word | individual domain | predicate | full name quantifier | existence quantifier | predicate formula | exercise)
Stepping on pits and solutions when using inputfilter to limit EditText
Web会话管理安全问题
使用InputFilter限制EditText时踩坑及解决方案
Stop using system Currenttimemillis() takes too long to count. It's too low. Stopwatch is easy to use!
User value is the last word in the competition of mobile phone market
Avec trois. JS fait une scène 3D simple
C programming learning notes [edited by Mr. Tan Haoqiang] (Chapter III sequence programming) 05 data input and output
动态规划:最长公共子串和最长公共子序列
Ffmpeg one / more pictures synthetic video
Hi3536C V100R001C02SPC040 交叉编译器安装
VS克隆时显示403错误
Elsevier latex submitted the article pdftex def Error: File `thumbnails/cas-email. jpeg‘ not found: using draf
Mongodb installation & Deployment
Simple wechat applet development page Jump, data binding, obtaining user information, obtaining user location information
Role of JS No