当前位置:网站首页>[mathematical logic] propositional logic (judgment of the correctness of propositional logic reasoning | formal structure is eternal truth - equivalent calculus | deduction from premise - logical reas
[mathematical logic] propositional logic (judgment of the correctness of propositional logic reasoning | formal structure is eternal truth - equivalent calculus | deduction from premise - logical reas
2022-07-03 03:40:00 【Programmer community】
List of articles
- One 、 Judgment of the correctness of propositional logic reasoning
- Two 、 The formal structure is forever true ( Equivalent calculus )
- 3、 ... and 、 Deduce the conclusion from the premise ( logical reasoning )
One 、 Judgment of the correctness of propositional logic reasoning
Propositional reasoning , according to Premise , Reasoning out Conclusion ;
Such as :
Premise : yes
p
→
(
q
→
r
)
p \to (q \to r)
p→(q→r) ,
p
p
p ,
q
q
q ;
Conclusion : yes
r
r
r
How to judge according to the above premise , The reasoning conclusion is correct ?
The law of reasoning :
A
,
B
A,B
A,B There are two propositions , If
A
→
B
A \to B
A→B It's Yongzhen style , that
A
⇒
B
A \Rightarrow B
A⇒B ;
The formal structure of reasoning
Premise :
A
1
,
A
2
,
⋯
,
A
k
A_1 , A_2 , \cdots , A_k
A1,A2,⋯,Ak
Conclusion :
B
B
B
The formal structure of reasoning is :
(
A
1
∧
A
2
∧
⋯
∧
A
k
)
→
B
(A_1 \land A_2 \land \cdots \land A_k) \to B
(A1∧A2∧⋯∧Ak)→B
Propositional logic The correctness of reasoning determine , There are two ways ;
Method 1 : Write inferential Formal structure , Check whether the formal structure of the reasoning is Yongzhen style ; If it is Yongzhen , Then the reasoning is correct ;
Method 2 : from Premise Deduce Conclusion , according to Equivalence calculus rules , Rules of reasoning , Make a deduction ;
Two 、 The formal structure is forever true ( Equivalent calculus )
Equivalent calculus reference blog : 【 Mathematical logic 】 Propositional logic ( Equivalent calculus | Idempotent law | Commutative law | Associative law | Distributive law | De Morgan law | absorptivity | Law of zero | The same thing | The law of excluded middle | Law of contradiction | Double negative rate | Implication equivalence … )
Premise :
p
→
(
q
→
r
)
p \to (q \to r)
p→(q→r) ,
p
p
p ,
q
q
q ;
Conclusion :
r
r
r
The formal structure of reasoning is :
(
p
→
(
q
→
r
)
)
∧
p
∧
q
→
r
(p \to (q \to r)) \land p \land q \to r
(p→(q→r))∧p∧q→r
Use Equivalent calculus Methods , Verify whether the above formal structure is Yongzhen style ;
Connective The priority for :“
¬
\lnot
¬” Greater than “
∧
,
∨
\land , \lor
∧,∨” Greater than “
→
,
\to, \leftrightarrow
→,” ; Start with the higher priority ;
(
p
→
(
q
→
r
)
)
∧
p
∧
q
→
r
(p \to (q \to r)) \land p \land q \to r
(p→(q→r))∧p∧q→r
Implication equivalence : Use Implication equivalence The rules , Put the above
(
p
→
(
q
→
r
)
)
(p \to (q \to r))
(p→(q→r)) Perform equivalent calculus :
⇔
(
¬
p
∨
(
¬
q
∨
r
)
)
∧
p
∧
q
→
r
\Leftrightarrow (\lnot p \lor (\lnot q \lor r)) \land p \land q \to r
⇔(¬p∨(¬q∨r))∧p∧q→r
Distribution rate : according to Distribution rate , Calculation
(
¬
p
∨
(
¬
q
∨
r
)
)
∧
p
(\lnot p \lor (\lnot q \lor r)) \land p
(¬p∨(¬q∨r))∧p part :
⇔
(
(
¬
p
∧
p
)
∨
(
(
¬
q
∨
r
)
∧
p
)
)
∧
q
→
r
\Leftrightarrow (( \lnot p \land p ) \lor ( (\lnot q \lor r) \land p ) ) \land q \to r
⇔((¬p∧p)∨((¬q∨r)∧p))∧q→r
Law of contradiction : among according to Law of contradiction You know ,
¬
p
∧
p
⇔
0
\lnot p \land p \Leftrightarrow 0
¬p∧p⇔0 :
⇔
(
0
∨
(
(
¬
q
∨
r
)
∧
p
)
)
∧
q
→
r
\Leftrightarrow ( 0 \lor ( (\lnot q \lor r) \land p ) ) \land q \to r
⇔(0∨((¬q∨r)∧p))∧q→r
The same thing : according to The same thing ,
0
∨
(
(
¬
q
∨
r
)
∧
p
)
0 \lor ( (\lnot q \lor r) \land p )
0∨((¬q∨r)∧p) And
(
¬
q
∨
r
)
∧
p
(\lnot q \lor r) \land p
(¬q∨r)∧p It is equivalent. :
⇔
(
(
¬
q
∨
r
)
∧
p
)
∧
q
→
r
\Leftrightarrow ( (\lnot q \lor r) \land p ) \land q \to r
⇔((¬q∨r)∧p)∧q→r
Associative law : according to Associative law , To recombine
(
(
¬
q
∨
r
)
∧
p
)
∧
q
( (\lnot q \lor r) \land p ) \land q
((¬q∨r)∧p)∧q by
(
(
¬
q
∨
r
)
∧
q
)
∧
p
( (\lnot q \lor r) \land q ) \land p
((¬q∨r)∧q)∧p :
⇔
(
(
¬
q
∨
r
)
∧
q
)
∧
p
→
r
\Leftrightarrow ( (\lnot q \lor r) \land q ) \land p \to r
⇔((¬q∨r)∧q)∧p→r
Distribution rate : according to Distribution rate , Calculation
(
¬
q
∨
r
)
∧
q
(\lnot q \lor r) \land q
(¬q∨r)∧q , The result is
(
¬
q
∧
q
)
∨
(
r
∧
q
)
(\lnot q \land q) \lor (r \land q)
(¬q∧q)∨(r∧q)
⇔
(
(
¬
q
∧
q
)
∨
(
r
∧
q
)
)
∧
p
→
r
\Leftrightarrow ( (\lnot q \land q) \lor (r \land q) ) \land p \to r
⇔((¬q∧q)∨(r∧q))∧p→r
Law of contradiction : according to Law of contradiction Calculation
¬
q
∧
q
\lnot q \land q
¬q∧q , As a result,
0
0
0 :
⇔
(
0
∨
(
r
∧
q
)
)
∧
p
→
r
\Leftrightarrow ( 0 \lor (r \land q) ) \land p \to r
⇔(0∨(r∧q))∧p→r
The same thing : According to the same ,
0
∨
(
r
∧
q
)
0 \lor (r \land q)
0∨(r∧q) Equivalent to
(
r
∧
q
)
(r \land q)
(r∧q) :
⇔
(
r
∧
q
)
∧
p
→
r
\Leftrightarrow (r \land q) \land p \to r
⇔(r∧q)∧p→r
Connective priority :
(
r
∧
q
)
∧
p
(r \land q) \land p
(r∧q)∧p in , The conjunctions have the same priority , Brackets can be deleted , Put three propositions in a bracket ;
⇔
(
r
∧
q
∧
p
)
→
r
\Leftrightarrow (r \land q \land p ) \to r
⇔(r∧q∧p)→r
Implication equivalence : according to Implication equivalence , elimination Implicative connectives
→
\to
→ :
⇔
¬
(
r
∧
q
∧
p
)
∨
r
\Leftrightarrow \lnot (r \land q \land p) \lor r
⇔¬(r∧q∧p)∨r
De Morgan law : according to De Morgan law , Assign a negative sign in parentheses ;
⇔
(
¬
r
∨
¬
q
∨
¬
p
)
∨
r
\Leftrightarrow (\lnot r \lor \lnot q \lor \lnot p ) \lor r
⇔(¬r∨¬q∨¬p)∨r
Connective priority :
(
¬
r
∨
¬
q
∨
¬
p
)
∨
r
(\lnot r \lor \lnot q \lor \lnot p ) \lor r
(¬r∨¬q∨¬p)∨r in , The conjunctions have the same priority , Brackets can be deleted , Put three propositions in a bracket ;
⇔
¬
r
∨
¬
q
∨
¬
p
∨
r
\Leftrightarrow \lnot r \lor \lnot q \lor \lnot p \lor r
⇔¬r∨¬q∨¬p∨r
The law of excluded middle : According to the law of exclusion ,
¬
r
∨
r
\lnot r \lor r
¬r∨r And
1
1
1 Equivalent ;
⇔
1
∨
¬
q
∨
¬
p
\Leftrightarrow 1 \lor \lnot q \lor \lnot p
⇔1∨¬q∨¬p
Law of zero : According to the zero law ,
1
1
1 Extract any value , Are equivalent to
1
1
1 :
⇔
1
\Leftrightarrow 1
⇔1
3、 ... and 、 Deduce the conclusion from the premise ( logical reasoning )
Logical reasoning reference blog : 【 Mathematical logic 】 Propositional logic ( Propositional logic inference | The formal structure of reasoning | The law of reasoning | Additional law | The law of simplification | Hypothetical reasoning | Reject | Disjunctive syllogism | Hypothetical syllogism | Equivalent syllogism | constructive dilemma )
Premise :
p
→
(
q
→
r
)
p \to (q \to r)
p→(q→r) ,
p
p
p ,
q
q
q ;
Conclusion :
r
r
r
Connect the prerequisites with conjunctive connectives ,
(
p
→
(
q
→
r
)
)
∧
p
∧
q
(p \to (q \to r)) \land p \land q
(p→(q→r))∧p∧q , Perform equivalent calculus , To calculate the
r
r
r ;
(
p
→
(
q
→
r
)
)
∧
p
∧
q
(p \to (q \to r)) \land p \land q
(p→(q→r))∧p∧q
Equivalent calculus Associative law :
⇔
(
(
p
→
(
q
→
r
)
)
∧
p
)
∧
q
\Leftrightarrow ((p \to (q \to r)) \land p) \land q
⇔((p→(q→r))∧p)∧q
logical reasoning Hypothetical reasoning :
(
A
→
B
)
∧
A
⇒
B
( A \to B ) \land A \Rightarrow B
(A→B)∧A⇒B , So from
(
p
→
(
q
→
r
)
)
∧
p
(p \to (q \to r)) \land p
(p→(q→r))∧p It can be inferred that
q
→
r
q \to r
q→r ;
⇒
(
q
→
r
)
∨
q
\Rightarrow (q \to r) \lor q
⇒(q→r)∨q
logical reasoning Hypothetical reasoning :
(
A
→
B
)
∧
A
⇒
B
( A \to B ) \land A \Rightarrow B
(A→B)∧A⇒B , So from
(
q
→
r
)
∨
q
(q \to r) \lor q
(q→r)∨q It can be inferred that
r
r
r ;
⇒
r
\Rightarrow r
⇒r
logical reasoning Than Equivalent calculus fast , Equivalent calculus is more intuitive , Logical reasoning needs to choose the appropriate reasoning law ;
边栏推荐
- Use three JS make a simple 3D scene
- MongoDB简介
- Ansible introduction [unfinished (semi-finished products)]
- C # webrequest post mode, based on "basic auth" password authentication mode, uploads files and submits other data using multipart / form data mode
- Dynamic programming: longest common substring and longest common subsequence
- C programming learning notes [edited by Mr. Tan Haoqiang] (Chapter III sequence programming) 03 operators and expressions
- Mongodb installation & Deployment
- 900W+ 数据,从 17s 到 300ms,如何操作
- Don't use the new Dede collection without the updated Dede plug-in
- Filter
猜你喜欢

Error in compiled file: error: unmapped character encoding GBK

IPv6过渡技术-6to4手工隧道配置实验--尚文网络奎哥

IPv6 transition technology-6to4 manual tunnel configuration experiment -- Kuige of Shangwen network

softmax的近似之NCE详解
![[embedded module] OLED display module](/img/c4/474f5ee580d132654fbd1a4cd53bab.jpg)
[embedded module] OLED display module

FileZilla client download and installation

Summary of electromagnetic spectrum

User value is the last word in the competition of mobile phone market

UMI route interception (simple and rough)

Recursion: depth first search
随机推荐
FileZilla Client下载安装
MongoDB安装 & 部署
Compare float with 0
Vs 2019 configuration tensorrt
Vs 2019 installation and configuration opencv
[combinatorics] brief introduction to generating function (definition of generating function | Newton binomial coefficient | commonly used generating function | correlation with constant | correlation
递归使用和多维数组对象变一维数组对象
Application of derivative in daily question
Positioning (relative positioning, absolute positioning, fixed positioning, Z-index) 2022-2-11
NPM: the 'NPM' item cannot be recognized as the name of a cmdlet, function, script file, or runnable program. Please check the spelling of the name. If the path is included, make sure the path is corr
MongoDB简介
Error in compiled file: error: unmapped character encoding GBK
Makefile demo
Summary of matrix knowledge points in Chapter 2 of Linear Algebra (Jeff's self perception)
小程序获取用户头像和昵称
[leetcode question brushing day 34] 540 Unique element in array, 384 Disrupt array, 202 Happy number, 149 Maximum number of points on a line
[set theory] partial order relation (partial order relation definition | partial order set definition | greater than or equal to relation | less than or equal to relation | integer division relation |
Null and undefined
Nce detail of softmax approximation
Pytoch configuration