当前位置:网站首页>Summary of the mean value theorem of higher numbers
Summary of the mean value theorem of higher numbers
2022-07-07 05:21:00 【Full stack o-jay】
The mean value theorem
Generally used for proof questions , Analysis steps : Determine the interval 、 Determine auxiliary function 、 Determine the theorem used 、 Key point analysis .
f(x) stay [a,b] Continuous on ,
- Bounded and maximum theorem : m ≤ f ( x ) ≤ M m \leq f(x)\leq M m≤f(x)≤M
- Intermediate value theorem : m ≤ μ ≤ M , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = μ m\leq \mu \leq M, \exists \epsilon \in[a,b], f(\epsilon) = \mu m≤μ≤M,∃ϵ∈[a,b],f(ϵ)=μ
- Mean value theorem : a < x 1 < x 2 < ⋯ < x n < b , ∃ ϵ ∈ [ x 1 , x n ] , f ( ϵ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n a<x_1<x_2<\cdots<x_n<b, \exists \epsilon \in[x_1,x_n], f(\epsilon) = \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} a<x1<x2<⋯<xn<b,∃ϵ∈[x1,xn],f(ϵ)=nf(x1)+f(x2)+⋯+f(xn)
- Zero point theorem : f ( a ) ⋅ f ( b ) < 0 , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = 0 f(a)\cdot f(b)<0, \exists \epsilon \in[a,b], f(\epsilon) = 0 f(a)⋅f(b)<0,∃ϵ∈[a,b],f(ϵ)=0
- Fermat's theorem : x 0 It's about can guide And by extremely value , f ′ ( x 0 ) = 0 x_0 Is differentiable and extremum , f'(x_0) = 0 x0 It's about can guide And by extremely value ,f′(x0)=0
- Rolle's theorem : [ a , b ) can guide , f ( a ) = f ( b ) , ∃ ϵ ∈ [ a , b ] , f ′ ( ϵ ) = 0 [a,b) Derivable , f(a) = f(b), \exists \epsilon \in[a,b], f'(\epsilon) = 0 [a,b) can guide ,f(a)=f(b),∃ϵ∈[a,b],f′(ϵ)=0
- Lagrange mean value theorem : ( a , b ) can guide , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) = f ′ ( ϵ ) ( b − a ) (a,b) Derivable , \exists \epsilon \in[a,b], f(b) - f(a) = f'(\epsilon)(b-a) (a,b) can guide ,∃ϵ∈[a,b],f(b)−f(a)=f′(ϵ)(b−a)
- Cauchy mean value theorem : ( a , b ) can guide , g ′ ( x ) ≠ 0 , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ϵ ) g ′ ( ϵ ) (a,b) Derivable , g'(x)\neq 0, \exists \epsilon \in[a,b], \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\epsilon)}{g'(\epsilon)} (a,b) can guide ,g′(x)=0,∃ϵ∈[a,b],g(b)−g(a)f(b)−f(a)=g′(ϵ)f′(ϵ)
- Taylor formula ( lagrange remainder ): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ϵ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +\frac{f^{(n+1)}(\epsilon)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+(n+1)!f(n+1)(ϵ)(x−x0)n+1
- Taylor formula ( Payano's remainder ): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + O ( ( x − x 0 ) n ) f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +O((x-x_0)^n) f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+O((x−x0)n)
- Mean value theorem of integral : ∃ ϵ ∈ [ a , b ] , ∫ a b f ( x ) d x b − a = f ( ϵ ) \exists \epsilon \in[a,b], \frac{\int_a^bf(x)dx}{b-a} = f(\epsilon) ∃ϵ∈[a,b],b−a∫abf(x)dx=f(ϵ)
There is a memory skill , The most commonly used are seven ,“ Zero dielectric ferroratesi ”, If you see the proof question, you can try it one by one ,
边栏推荐
猜你喜欢
Complete code of C language neural network and its meaning
带你遨游银河系的 10 种分布式数据库
[email protected] Mapping relatio"/>
Why JSON is used for calls between interfaces, how fastjson is assigned, fastjson 1.2 [email protected] Mapping relatio
高级程序员必知必会,一文详解MySQL主从同步原理,推荐收藏
Auto. JS get all app names of mobile phones
Window scheduled tasks
Harmonyos fourth training
DJ-ZBS2漏电继电器
利用OPNET进行网络单播(一服务器多客户端)仿真的设计、配置及注意点
Annotation初体验
随机推荐
10 distributed databases that take you to the galaxy
基于 hugging face 预训练模型的实体识别智能标注方案:生成doccano要求json格式
全链路压测:影子库与影子表之争
漏电继电器JD1-100
Simulate thread communication
U++ game learning notes
A cool "ghost" console tool
Disk monitoring related commands
背包问题(01背包,完全背包,动态规划)
《2》 Label
腾讯云数据库公有云市场稳居TOP 2!
Tencent cloud database public cloud market ranks top 2!
The execution order of return in JS' try catch finally
sublime使用技巧
Wonderful express | Tencent cloud database June issue
想要选择一些部门优先使用 OKR, 应该如何选择试点部门?
np. random. Shuffle and np Use swapaxis or transfer with caution
SQL injection - secondary injection and multi statement injection
局部变量的数组初始化问题
Auto. JS get all app names of mobile phones