当前位置:网站首页>Summary of the mean value theorem of higher numbers
Summary of the mean value theorem of higher numbers
2022-07-07 05:21:00 【Full stack o-jay】
The mean value theorem
Generally used for proof questions , Analysis steps : Determine the interval 、 Determine auxiliary function 、 Determine the theorem used 、 Key point analysis .
f(x) stay [a,b] Continuous on ,
- Bounded and maximum theorem : m ≤ f ( x ) ≤ M m \leq f(x)\leq M m≤f(x)≤M
- Intermediate value theorem : m ≤ μ ≤ M , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = μ m\leq \mu \leq M, \exists \epsilon \in[a,b], f(\epsilon) = \mu m≤μ≤M,∃ϵ∈[a,b],f(ϵ)=μ
- Mean value theorem : a < x 1 < x 2 < ⋯ < x n < b , ∃ ϵ ∈ [ x 1 , x n ] , f ( ϵ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n a<x_1<x_2<\cdots<x_n<b, \exists \epsilon \in[x_1,x_n], f(\epsilon) = \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} a<x1<x2<⋯<xn<b,∃ϵ∈[x1,xn],f(ϵ)=nf(x1)+f(x2)+⋯+f(xn)
- Zero point theorem : f ( a ) ⋅ f ( b ) < 0 , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = 0 f(a)\cdot f(b)<0, \exists \epsilon \in[a,b], f(\epsilon) = 0 f(a)⋅f(b)<0,∃ϵ∈[a,b],f(ϵ)=0
- Fermat's theorem : x 0 It's about can guide And by extremely value , f ′ ( x 0 ) = 0 x_0 Is differentiable and extremum , f'(x_0) = 0 x0 It's about can guide And by extremely value ,f′(x0)=0
- Rolle's theorem : [ a , b ) can guide , f ( a ) = f ( b ) , ∃ ϵ ∈ [ a , b ] , f ′ ( ϵ ) = 0 [a,b) Derivable , f(a) = f(b), \exists \epsilon \in[a,b], f'(\epsilon) = 0 [a,b) can guide ,f(a)=f(b),∃ϵ∈[a,b],f′(ϵ)=0
- Lagrange mean value theorem : ( a , b ) can guide , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) = f ′ ( ϵ ) ( b − a ) (a,b) Derivable , \exists \epsilon \in[a,b], f(b) - f(a) = f'(\epsilon)(b-a) (a,b) can guide ,∃ϵ∈[a,b],f(b)−f(a)=f′(ϵ)(b−a)
- Cauchy mean value theorem : ( a , b ) can guide , g ′ ( x ) ≠ 0 , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ϵ ) g ′ ( ϵ ) (a,b) Derivable , g'(x)\neq 0, \exists \epsilon \in[a,b], \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\epsilon)}{g'(\epsilon)} (a,b) can guide ,g′(x)=0,∃ϵ∈[a,b],g(b)−g(a)f(b)−f(a)=g′(ϵ)f′(ϵ)
- Taylor formula ( lagrange remainder ): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ϵ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +\frac{f^{(n+1)}(\epsilon)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+(n+1)!f(n+1)(ϵ)(x−x0)n+1
- Taylor formula ( Payano's remainder ): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + O ( ( x − x 0 ) n ) f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +O((x-x_0)^n) f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+O((x−x0)n)
- Mean value theorem of integral : ∃ ϵ ∈ [ a , b ] , ∫ a b f ( x ) d x b − a = f ( ϵ ) \exists \epsilon \in[a,b], \frac{\int_a^bf(x)dx}{b-a} = f(\epsilon) ∃ϵ∈[a,b],b−a∫abf(x)dx=f(ϵ)
There is a memory skill , The most commonly used are seven ,“ Zero dielectric ferroratesi ”, If you see the proof question, you can try it one by one ,
边栏推荐
- If you want to choose some departments to give priority to OKR, how should you choose pilot departments?
- 使用知云阅读器翻译统计遗传学书籍
- Simulate thread communication
- 基于 hugging face 预训练模型的实体识别智能标注方案:生成doccano要求json格式
- As we media, what websites are there to download video clips for free?
- 【opencv】图像形态学操作-opencv标记不同连通域的位置
- 照片选择器CollectionView
- Is it necessary to renew the PMP certificate?
- Autowired注解用于List时的现象解析
- Leetcode(46)——全排列
猜你喜欢
随机推荐
2039: [Bluebridge cup 2022 preliminaries] Li Bai's enhanced version (dynamic planning)
Harmonyos fourth training
np.random.shuffle与np.swapaxis或transpose一起时要慎用
Is the human body sensor easy to use? How to use it? Which do you buy between aqara green rice and Xiaomi
10 distributed databases that take you to the galaxy
[question] Compilation Principle
高数中值定理总结
基于 hugging face 预训练模型的实体识别智能标注方案:生成doccano要求json格式
JHOK-ZBG2漏电继电器
Autowired注解用于List时的现象解析
Weebly mobile website editor mobile browsing New Era
拿到PMP认证带来什么改变?
Complete code of C language neural network and its meaning
QT控件样式系列(一)之QSlider
JVM(十九) -- 字节码与类的加载(四) -- 再谈类的加载器
Safe landing practice of software supply chain under salesforce containerized ISV scenario
Let f (x) = Σ x^n/n^2, prove that f (x) + F (1-x) + lnxln (1-x) = Σ 1/n^2
Timer create timer
Array initialization of local variables
Disk monitoring related commands









