当前位置:网站首页>Summary of the mean value theorem of higher numbers
Summary of the mean value theorem of higher numbers
2022-07-07 05:21:00 【Full stack o-jay】
The mean value theorem
Generally used for proof questions , Analysis steps : Determine the interval 、 Determine auxiliary function 、 Determine the theorem used 、 Key point analysis .
f(x) stay [a,b] Continuous on ,
- Bounded and maximum theorem : m ≤ f ( x ) ≤ M m \leq f(x)\leq M m≤f(x)≤M
- Intermediate value theorem : m ≤ μ ≤ M , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = μ m\leq \mu \leq M, \exists \epsilon \in[a,b], f(\epsilon) = \mu m≤μ≤M,∃ϵ∈[a,b],f(ϵ)=μ
- Mean value theorem : a < x 1 < x 2 < ⋯ < x n < b , ∃ ϵ ∈ [ x 1 , x n ] , f ( ϵ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n a<x_1<x_2<\cdots<x_n<b, \exists \epsilon \in[x_1,x_n], f(\epsilon) = \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} a<x1<x2<⋯<xn<b,∃ϵ∈[x1,xn],f(ϵ)=nf(x1)+f(x2)+⋯+f(xn)
- Zero point theorem : f ( a ) ⋅ f ( b ) < 0 , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = 0 f(a)\cdot f(b)<0, \exists \epsilon \in[a,b], f(\epsilon) = 0 f(a)⋅f(b)<0,∃ϵ∈[a,b],f(ϵ)=0
- Fermat's theorem : x 0 It's about can guide And by extremely value , f ′ ( x 0 ) = 0 x_0 Is differentiable and extremum , f'(x_0) = 0 x0 It's about can guide And by extremely value ,f′(x0)=0
- Rolle's theorem : [ a , b ) can guide , f ( a ) = f ( b ) , ∃ ϵ ∈ [ a , b ] , f ′ ( ϵ ) = 0 [a,b) Derivable , f(a) = f(b), \exists \epsilon \in[a,b], f'(\epsilon) = 0 [a,b) can guide ,f(a)=f(b),∃ϵ∈[a,b],f′(ϵ)=0
- Lagrange mean value theorem : ( a , b ) can guide , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) = f ′ ( ϵ ) ( b − a ) (a,b) Derivable , \exists \epsilon \in[a,b], f(b) - f(a) = f'(\epsilon)(b-a) (a,b) can guide ,∃ϵ∈[a,b],f(b)−f(a)=f′(ϵ)(b−a)
- Cauchy mean value theorem : ( a , b ) can guide , g ′ ( x ) ≠ 0 , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ϵ ) g ′ ( ϵ ) (a,b) Derivable , g'(x)\neq 0, \exists \epsilon \in[a,b], \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\epsilon)}{g'(\epsilon)} (a,b) can guide ,g′(x)=0,∃ϵ∈[a,b],g(b)−g(a)f(b)−f(a)=g′(ϵ)f′(ϵ)
- Taylor formula ( lagrange remainder ): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ϵ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +\frac{f^{(n+1)}(\epsilon)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+(n+1)!f(n+1)(ϵ)(x−x0)n+1
- Taylor formula ( Payano's remainder ): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + O ( ( x − x 0 ) n ) f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +O((x-x_0)^n) f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+O((x−x0)n)
- Mean value theorem of integral : ∃ ϵ ∈ [ a , b ] , ∫ a b f ( x ) d x b − a = f ( ϵ ) \exists \epsilon \in[a,b], \frac{\int_a^bf(x)dx}{b-a} = f(\epsilon) ∃ϵ∈[a,b],b−a∫abf(x)dx=f(ϵ)
There is a memory skill , The most commonly used are seven ,“ Zero dielectric ferroratesi ”, If you see the proof question, you can try it one by one ,
边栏推荐
- 实现网页内容可编辑
- Under the trend of Micah, orebo and apple homekit, how does zhiting stand out?
- np. random. Shuffle and np Use swapaxis or transfer with caution
- K6EL-100漏电继电器
- Understand common network i/o models
- 基于 hugging face 预训练模型的实体识别智能标注方案:生成doccano要求json格式
- CentOS 7.9 installing Oracle 21C Adventures
- 带你遨游银河系的 10 种分布式数据库
- Leetcode(46)——全排列
- 人体传感器好不好用?怎么用?Aqara绿米、小米之间到底买哪个
猜你喜欢
JHOK-ZBG2漏电继电器
Phenomenon analysis when Autowired annotation is used for list
Salesforce 容器化 ISV 场景下的软件供应链安全落地实践
Leetcode (417) -- Pacific Atlantic current problem
Dynamically generate tables
Weebly mobile website editor mobile browsing New Era
pmp真的有用吗?
Techniques d'utilisation de sublime
Leetcode(46)——全排列
Y58. Chapter III kubernetes from entry to proficiency - continuous integration and deployment (Sany)
随机推荐
torch optimizer小解析
数字化创新驱动指南
带你遨游银河系的 10 种分布式数据库
[question] Compilation Principle
The founder has a debt of 1billion. Let's start the class. Is it about to "end the class"?
腾讯云数据库公有云市场稳居TOP 2!
QT控件样式系列(一)之QSlider
2. Overview of securities investment funds
The sooner you understand the four rules of life, the more blessed you will be
全链路压测:影子库与影子表之争
QSlider of QT control style series (I)
Creation and use of thread pool
DOM-节点对象+时间节点 综合案例
np.random.shuffle与np.swapaxis或transpose一起时要慎用
Complete code of C language neural network and its meaning
Dynamically generate tables
app clear data源码追踪
window定时计划任务
最长不下降子序列(LIS)(动态规划)
[QT] custom control loading