当前位置:网站首页>最全常用高数公式
最全常用高数公式
2022-07-06 22:42:00 【全栈O-Jay】
文章目录
1 等价无穷小 ( x → 0 x\to 0 x→0)
s i n x ∼ x sinx\sim x sinx∼x, t a n x ∼ x tanx\sim x tanx∼x, a r c s i n x ∼ x arcsinx\sim x arcsinx∼x, a r c t a n x ∼ x arctanx\sim x arctanx∼x, e x − 1 ∼ x e^x -1\sim x ex−1∼x, I n ( 1 + x ) ∼ x In(1+x)\sim x In(1+x)∼x,
a x − 1 = e x I n a − 1 ∼ x I n a a^x-1= e^{xIna}-1\sim xIna ax−1=exIna−1∼xIna, 1 − c o s x ∼ 1 2 x 2 1-cosx\sim \frac{1}{2}x^2 1−cosx∼21x2, ( 1 + x ) a − 1 ∼ a x (1+x)^a -1\sim ax (1+x)a−1∼ax,
小 + 大 ∼ 大 小+大\sim 大 小+大∼大, ∫ 0 x f ( t ) d t ∼ x \int_{0}^{x}f(t)dt\sim x ∫0xf(t)dt∼x
2 常用公式
2.1 和式夹逼准则的两个思路
n → ∞ : n ⋅ u m i n ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x n → 有 限 : 1 ⋅ u m a x ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x n\to \infty : n\cdot u_{min}\leq \sum\limits_{i=1}^{n}u_i \leq n\cdot u_{max}\\ n\to 有限 : 1\cdot u_{max}\leq \sum\limits_{i=1}^{n}u_i \leq n\cdot u_{max} n→∞:n⋅umin≤i=1∑nui≤n⋅umaxn→有限:1⋅umax≤i=1∑nui≤n⋅umax
2.2 小基础
- ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^3 = a^3+ 3a^2b + 3ab^2 + b^3 (a+b)3=a3+3a2b+3ab2+b3
- a 3 − b 3 = ( a − b ) ( a 2 + a b + b 3 ) a^3-b^3 = (a-b)(a^2 + ab + b^3) a3−b3=(a−b)(a2+ab+b3)
- ( a + b ) n = ∑ k = 0 n C n k a n − k b k (a+b)^n = \sum\limits_{k=0}^{n}C_n^ka^{n-k}b^k (a+b)n=k=0∑nCnkan−kbk
- ∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{k=1}^{n}k^2 = \frac{n(n+1)(2n+1)}{6} k=1∑nk2=6n(n+1)(2n+1)
- ∑ n = 1 ∞ 1 n 2 = π 2 6 \sum\limits_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi ^2}{6} n=1∑∞n21=6π2
2.3 一元二次方程解
X 1 , 2 = − b ± b 2 − 4 a c 2 a , X 1 + X 2 = − b a , X 1 X 2 = a c , 顶 点 : ( − b 2 a , c − b 2 4 a ) X_{1,2} = \frac{-b\pm \sqrt{b^2-4ac}}{2a}, X_1 + X_2 = -\frac{b}{a}, X_1X_2 = \frac{a}{c},\\顶点: (-\frac{b}{2a} , c-\frac{b^2}{4a}) X1,2=2a−b±b2−4ac,X1+X2=−ab,X1X2=ca,顶点:(−2ab,c−4ab2)
3 * \bigstar *常用展开公式 * \bigstar *
- e x = 1 + x + x 2 2 ! + ⋯ = ∑ n = 0 ∞ x n n ! e^x = 1+x+\frac{x^2}{2!}+\cdots =\sum\limits_{n=0}^{\infty}\frac{x^n}{n!} ex=1+x+2!x2+⋯=n=0∑∞n!xn
- I n ( 1 + x ) = x − x 2 2 + ⋯ = ∑ n = 0 ∞ ( − 1 ) n − 1 x n n ( − 1 < x ≤ 1 ) In(1+x) = x-\frac{x^2}{2}+\cdots =\sum\limits_{n=0}^{\infty}(-1)^{n-1}\frac{x^n}{n}\quad (-1<x\leq 1) In(1+x)=x−2x2+⋯=n=0∑∞(−1)n−1nxn(−1<x≤1)
- I n ( 1 − x ) = − ∑ n = 0 ∞ x n n ( − 1 < x ≤ 1 ) In(1-x) = -\sum\limits_{n=0}^{\infty}\frac{x^n}{n}\quad (-1<x\leq 1) In(1−x)=−n=0∑∞nxn(−1<x≤1)
- 1 1 − x = 1 + x + x 2 + ⋯ = ∑ n = 0 ∞ x n ∣ x ∣ < 1 \frac{1}{1-x} = 1+x+x^2+\cdots =\sum\limits_{n=0}^{\infty}x^n\quad \mid x\mid <1 1−x1=1+x+x2+⋯=n=0∑∞xn∣x∣<1
- s i n x = x − x 3 3 ! + ⋯ = ∑ n = 0 − ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sinx = x-\frac{x^3}{3!}+\cdots =\sum\limits_{n=0}^{-\infty}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!} sinx=x−3!x3+⋯=n=0∑−∞(−1)n(2n+1)!x2n+1
- c o s x = 1 − x 2 2 ! + ⋯ = ∑ n = 0 − ∞ ( − 1 ) n x 2 n ( 2 n ) ! cosx = 1-\frac{x^2}{2!}+\cdots =\sum\limits_{n=0}^{-\infty}(-1)^{n}\frac{x^{2n}}{(2n)!} cosx=1−2!x2+⋯=n=0∑−∞(−1)n(2n)!x2n
- t a n x = x + x 3 3 + O ( x 3 ) tanx = x+\frac{x^3}{3}+O(x^3) tanx=x+3x3+O(x3)
- a r c s i n x = x + x 3 6 + O ( x 3 ) arcsinx = x+\frac{x^3}{6}+O(x^3) arcsinx=x+6x3+O(x3)
- a r c t a n x = x − x 3 3 + O ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 arctanx = x-\frac{x^3}{3}+O(x^3) = \sum\limits_{n=0}^{\infty}(-1)^{n}\frac{x^{2n+1}}{2n+1} arctanx=x−3x3+O(x3)=n=0∑∞(−1)n2n+1x2n+1
- e x − e − x 2 = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! \frac{e^x-e^{-x}}{2} = \sum\limits_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!} 2ex−e−x=n=0∑∞(2n+1)!x2n+1
- e x + e − x 2 = ∑ n = 0 ∞ x 2 n ( 2 n ) ! \frac{e^x+e^{-x}}{2} = \sum\limits_{n=0}^{\infty}\frac{x^{2n}}{(2n)!} 2ex+e−x=n=0∑∞(2n)!x2n
- ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 x 2 + O ( x 2 ) (1+x)^a = 1+ax+\frac{a(a-1)}2{x^2} + O(x^2) (1+x)a=1+ax+2a(a−1)x2+O(x2)
4 常用不等式
- a r c t a n x < x < a r c s i n x ( 0 ≤ x ≤ 1 ) arctanx < x < arcsinx \quad (0\leq x\leq 1) arctanx<x<arcsinx(0≤x≤1)
- e x ≥ x + 1 ( ∀ x ) e^x \geq x+1\quad (∀x) ex≥x+1(∀x)
- x − 1 ≥ I n x ( x > 0 ) x-1 \geq Inx\quad (x>0) x−1≥Inx(x>0)
- x > s i n x ( x > 0 ) x> sinx\quad (x>0) x>sinx(x>0)
- 1 1 + x < I n ( 1 + 1 x ) < 1 x \frac{1}{1+x}<In(1+\frac{1}{x})<\frac{1}{x} 1+x1<In(1+x1)<x1
- x 1 + x < I n ( 1 + x ) < x \frac{x}{1+x}<In(1+x)<x 1+xx<In(1+x)<x
- a b ≤ a + b 2 ≤ a 2 + b 2 2 ( a , b > 0 ) \sqrt{ab}\leq \frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}\quad (a,b>0) ab≤2a+b≤2a2+b2(a,b>0)
- a b c 3 ≤ a + b + c 3 ( a , b , c > 0 ) \sqrt[3]{abc}\leq \frac{a+b+c}{3}\quad (a,b,c>0) 3abc≤3a+b+c(a,b,c>0)
- ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ \mid a\pm b\mid \leq \mid a\mid + \mid b\mid ∣a±b∣≤∣a∣+∣b∣
- ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ \mid \mid a\mid - \mid b\mid \mid \leq \mid a-b\mid ∣∣a∣−∣b∣∣≤∣a−b∣
- ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \mid \int_a^bf(x)dx\mid \leq \int_a^b\mid f(x)\mid dx ∣∫abf(x)dx∣≤∫ab∣f(x)∣dx
5 三角变换
- 诱导公式法则:奇变偶不变,符号看象限!
- s i n 2 x = 2 s i n x c o s x sin2x = 2sinxcosx sin2x=2sinxcosx
- c o s 2 x = c o s 2 x − s i n 2 x = 1 − 2 s i n 2 x = 2 c o s 2 − 1 cos2x = cos^2x - sin^2x = 1-2sin^2x = 2cos^2-1 cos2x=cos2x−sin2x=1−2sin2x=2cos2−1
- s i n 3 x = − 4 s i n 3 x + 3 s i n x sin3x = -4sin^3x + 3sinx sin3x=−4sin3x+3sinx
- c o s 3 x = 4 c o s 2 x − 3 c o s x cos3x = 4cos^2x - 3cosx cos3x=4cos2x−3cosx
- s i n x ⋅ c o s y = 1 2 [ s i n ( x + y ) + s i n ( x − y ) ] sinx\cdot cosy = \frac{1}{2}[sin(x+y)+sin(x-y)] sinx⋅cosy=21[sin(x+y)+sin(x−y)]
- s i n 2 x 2 = 1 2 ( 1 − c o s x ) sin^2\frac{x}{2} = \frac{1}{2}(1-cosx) sin22x=21(1−cosx)
- c o s 2 x 2 = 1 2 ( 1 + c o s x ) cos^2\frac{x}{2} = \frac{1}{2}(1+cosx) cos22x=21(1+cosx)
- t a n 2 x 2 = 1 − c o s x s i n x = s i n x 1 + c o s x tan^2\frac{x}{2} = \frac{1-cosx}{sinx} = \frac{sinx}{1+cosx} tan22x=sinx1−cosx=1+cosxsinx
- s i n x = 2 t a n x 2 1 + t a n 2 x 2 sinx = \frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} sinx=1+tan22x2tan2x
- c o s x = 1 − t a n 2 x 2 1 + t a n 2 x 2 cosx = \frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}} cosx=1+tan22x1−tan22x
- t a n 2 x = 2 t a n x 1 − t a n 2 x tan2x = \frac{2tanx}{1-tan^2x} tan2x=1−tan2x2tanx
- c o t 2 x = c o t 2 x − 1 2 c o t x cot2x = \frac{cot^2x - 1}{2cotx} cot2x=2cotxcot2x−1
- 1 + t a n 2 x = s e c 2 x 1+tan^2x = sec^2x 1+tan2x=sec2x
- 1 + c o t 2 x = c s c 2 x 1+cot^2x = csc^2x 1+cot2x=csc2x
6 * \bigstar *微分 * \bigstar *
6.1 定义式
- f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0) = \lim\limits_{\Delta x\to{0}}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim\limits_{x\to{x_0}}\frac{f(x) - f(x_0)}{x-x_0} f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)=x→x0limx−x0f(x)−f(x0)
- f ( n ) ( x 0 ) = lim x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 f^{(n)}(x_0) = \lim\limits_{x\to{x_0}} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x-x_0} f(n)(x0)=x→x0limx−x0f(n−1)(x)−f(n−1)(x0)
- 连续 ⇏ \nRightarrow ⇏ 可导,可导 ⇒ \Rightarrow ⇒ 连续,可导 ⇔ \Leftrightarrow ⇔ 可微
6.2 常用难记微分公式
- ( t a n x ) ′ = s e c 2 x (tanx)' = sec^2x (tanx)′=sec2x
- ( c o t x ) ′ = − c s c 2 x (cotx)' = -csc^2x (cotx)′=−csc2x
- ( s e c x ) ′ = s e c x t a n x , ( c s c x ) ′ = − c s c x c o t x (secx)' = secxtanx, (cscx)' = -cscxcotx (secx)′=secxtanx,(cscx)′=−cscxcotx
- ( a r c s i n x ) ′ = 1 1 − x 2 , ( a r c c o s x ) ′ = − 1 1 − x 2 (arcsinx)' = \frac{1}{\sqrt{1-x^2}},\quad (arccosx)' = -\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21,(arccosx)′=−1−x21
- ( a r c t a n x ) ′ = 1 1 + x 2 , ( a r c c o t x ) ′ = − 1 1 + x 2 (arctanx)' = \frac{1}{1+x^2},\quad (arccotx)' = -\frac{1}{1+x^2} (arctanx)′=1+x21,(arccotx)′=−1+x21
- ( I n ∣ c o s x ∣ ) ′ = − t a n x (In\mid cosx\mid)' = -tanx (In∣cosx∣)′=−tanx
- ( I n ∣ s i n x ∣ ) ′ = c o t x (In\mid sinx\mid)' = cotx (In∣sinx∣)′=cotx
- ( I n ∣ s e c x + t a n x ∣ ) ′ = s e c x (In\mid secx + tanx\mid)' = secx (In∣secx+tanx∣)′=secx
- ( I n ∣ c s c x − c o t x ∣ ) ′ = c s c x (In\mid cscx - cotx\mid)' = cscx (In∣cscx−cotx∣)′=cscx
- [ I n ( x + x 2 ± a 2 ) ] ′ = 1 x 2 ± a 2 [In(x+\sqrt{x^2\pm a^2})]' = \frac{1}{\sqrt{x^2\pm a^2}} [In(x+x2±a2)]′=x2±a21
- d x 2 = ( d x ) 2 dx^2 = (dx)^2 dx2=(dx)2
- d ( x 2 ) = 2 x d x d(x^2) = 2xdx d(x2)=2xdx
- ( u v w ) ′ = u ′ v w + u v ′ w + u v w ′ (uvw)' = u'vw+uv'w+uvw' (uvw)′=u′vw+uv′w+uvw′
- ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)} = \sum\limits_{k=0}^{n}C_n^ku^{(n-k)}v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)
6.3 分析函数关注点
定义域、奇偶性、对称性、图形变换、单调性、极值、最值、凹凸性、拐点、三种渐近线(铅垂、水平、斜)
7 * \bigstar *积分 * \bigstar *
7.1 定积分定义
- ∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( a + b − a n i ) b − a n \int_a^bf(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(a+\frac{b-a}{n}i)\frac{b-a}{n} ∫abf(x)dx=n→∞limi=1∑∞f(a+nb−ai)nb−a
- ∫ 0 1 f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( i n ) 1 n \int_0^1f(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(\frac{i}{n})\frac{1}{n} ∫01f(x)dx=n→∞limi=1∑∞f(ni)n1
- ∫ 0 x f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( x n i ) x n \int_0^xf(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(\frac{x}{n}i)\frac{x}{n} ∫0xf(x)dx=n→∞limi=1∑∞f(nxi)nx
7.2 基本积分表
- ∫ x k d x = 1 k + 1 x k + 1 + C \int x^k dx = \frac{1}{k+1}x^{k+1} + C ∫xkdx=k+11xk+1+C
- ∫ a x d x = a x I n a + C \int a^x dx = \frac{a^x}{Ina} +C ∫axdx=Inaax+C
- ∫ s i n x d x = − c o s + C \int sinx dx = -cos +C ∫sinxdx=−cos+C
- ∫ c o s d x = s i n x + C \int cos dx = sinx +C ∫cosdx=sinx+C
- ∫ t a n x d x = − I n ∣ c o s x ∣ + C \int tanx dx = -In\mid cosx\mid +C ∫tanxdx=−In∣cosx∣+C
- ∫ c o t x d x = I n ∣ s i n x ∣ + C \int cotx dx = In\mid sinx\mid +C ∫cotxdx=In∣sinx∣+C
- ∫ s e c x d x = I n ∣ s e c x + t a n x ∣ + C \int secx dx = In\mid secx + tanx\mid +C ∫secxdx=In∣secx+tanx∣+C
- ∫ c s c x d x = I n ∣ c s c x − c o t x ∣ + C \int cscx dx = In\mid cscx - cotx\mid +C ∫cscxdx=In∣cscx−cotx∣+C
- ∫ s e c 2 x d x = t a n x + C \int sec^2x dx = tanx +C ∫sec2xdx=tanx+C
- ∫ c s c 2 x d x = − c o t x + C \int csc^2x dx = -cotx +C ∫csc2xdx=−cotx+C
- ∫ s e c x t a n x d x = s e c x + C \int secxtanx dx = secx +C ∫secxtanxdx=secx+C
- ∫ c s c x c o t x d x = − c s c x + C \int cscxcotx dx = -cscx +C ∫cscxcotxdx=−cscx+C
- ∫ 1 1 − x 2 d x = a r c s i n x + C \int \frac{1}{\sqrt{1-x^2}} dx = arcsinx +C ∫1−x21dx=arcsinx+C
- ∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int \frac{1}{\sqrt{a^2-x^2}} dx = arcsin\frac{x}{a} +C ∫a2−x21dx=arcsinax+C
- ∫ 1 1 + x 2 d x = a r c t a n x + C \int \frac{1}{1+x^2} dx = arctanx +C ∫1+x21dx=arctanx+C
- ∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C ( a > 0 ) \int \frac{1}{a^2+x^2} dx = \frac{1}{a}arctan\frac{x}{a} +C\quad (a>0) ∫a2+x21dx=a1arctanax+C(a>0)
- ∫ 1 x 2 + a 2 d x = I n ( x + x 2 + a 2 ) + C \int \frac{1}{\sqrt{x^2+a^2}} dx = In(x+\sqrt{x^2+a^2}) +C ∫x2+a21dx=In(x+x2+a2)+C
- ∫ 1 x 2 − a 2 d x = I n ( x + x 2 − a 2 ) + C ( ∣ x ∣ > ∣ a ∣ ) \int \frac{1}{\sqrt{x^2-a^2}} dx = In(x+\sqrt{x^2-a^2}) +C\quad (\mid x\mid>\mid a\mid) ∫x2−a21dx=In(x+x2−a2)+C(∣x∣>∣a∣)
- ∫ 1 x 2 − a 2 d x = 1 2 a I n ∣ x − a x + a ∣ + C \int \frac{1}{x^2-a^2} dx = \frac{1}{2a}In\mid \frac{x-a}{x+a}\mid +C ∫x2−a21dx=2a1In∣x+ax−a∣+C
- ∫ 1 a 2 − x 2 d x = 1 2 a I n ∣ x + a x − a ∣ + C \int \frac{1}{a^2-x^2} dx = \frac{1}{2a}In\mid \frac{x+a}{x-a}\mid +C ∫a2−x21dx=2a1In∣x−ax+a∣+C
- ∫ a 2 − x 2 d x = a 2 2 a r c s i n x a + x 2 a 2 − x 2 + C ( ∣ x ∣ < a ) \int \sqrt{a^2-x^2} dx = \frac{a^2}{2}arcsin\frac{x}{a} + \frac{x}{2}\sqrt{a^2-x^2} +C\quad (\mid x\mid<a) ∫a2−x2dx=2a2arcsinax+2xa2−x2+C(∣x∣<a)
- ∫ s i n 2 x d x = x 2 − s i n 2 x 4 + C \int sin^2x dx = \frac{x}{2} -\frac{sin2x}{4} +C ∫sin2xdx=2x−4sin2x+C
- ∫ c o s 2 x d x = x 2 + s i n 2 x 4 + C \int cos^2x dx = \frac{x}{2} +\frac{sin2x}{4} +C ∫cos2xdx=2x+4sin2x+C
7.3 常用积分公式
- ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^b f(x) dx = \int_a^b f(a+b-x) dx ∫abf(x)dx=∫abf(a+b−x)dx
- ∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_a^b f(x) dx = \frac{1}{2} \int_a^b [f(x)+f(a+b-x)] dx ∫abf(x)dx=21∫ab[f(x)+f(a+b−x)]dx
- ∫ a b f ( x ) d x = ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x \int_a^b f(x) dx = \int_a^{\frac{a+b}{2}} [f(x)+f(a+b-x)] dx ∫abf(x)dx=∫a2a+b[f(x)+f(a+b−x)]dx
- 点火公式: ∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x = n − 1 n n − 3 n − 2 ⋯ \int_0^\frac{\pi}{2}sin^nxdx = \int_0^\frac{\pi}{2}cos^nxdx = \frac{n-1}{n} \frac{n-3}{n-2} \cdots ∫02πsinnxdx=∫02πcosnxdx=nn−1n−2n−3⋯
- ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) \int_0^{\pi} xf(sinx) dx = \frac{\pi}{2}\int_0^{\pi} f(sinx) dx =\pi \int_0^{\frac{\pi}{2}} f(sinx) ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)
- ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \int_0^{\frac{\pi}{2}} f(sinx) dx = \int_0^{\frac{\pi}{2}} f(cosx) dx ∫02πf(sinx)dx=∫02πf(cosx)dx
- ∫ 0 π 2 f ( s i n x , c o s x ) d x = ∫ 0 π 2 f ( c o s x , s i n x ) d x \int_0^{\frac{\pi}{2}} f(sinx, cosx) dx = \int_0^{\frac{\pi}{2}} f(cosx,sinx) dx ∫02πf(sinx,cosx)dx=∫02πf(cosx,sinx)dx
- ∫ a b f ( x ) d x = ∫ − π 2 π 2 f ( a + b 2 + b − a 2 s i n t ) ⋅ b − a 2 c o s t d t , ( x − a + b 2 = b − a 2 s i n t ) \int_a^b f(x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\frac{a+b}{2} + \frac{b-a}{2} sint)\cdot \frac{b-a}{2}cost dt, \quad (x-\frac{a+b}{2} = \frac{b-a}{2}sint) ∫abf(x)dx=∫−2π2πf(2a+b+2b−asint)⋅2b−acostdt,(x−2a+b=2b−asint)
- ∫ a b f ( x ) d x = ∫ 0 1 ( b − a ) f [ a + ( b − a ) t ] d t , ( x − a = ( b − a ) t ) \int_a^b f(x) dx = \int_{0}^{1} (b-a) f[a+(b-a)t] dt, \quad (x-a = (b-a)t) ∫abf(x)dx=∫01(b−a)f[a+(b−a)t]dt,(x−a=(b−a)t)
- ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^a f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx ∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx
- ∫ 0 n π x ∣ s i n x ∣ d x = n 2 π \int_0^{n\pi} x\mid sinx\mid dx = n^2\pi ∫0nπx∣sinx∣dx=n2π
7.4 积分常用方法
凑微分、换元、分部积分、通分
全部手打,如果觉得有帮助帮忙点个赞啦蟹蟹!之后会继续补全高数下的公式,可以先收藏哦。
边栏推荐
- Tree map: tree view - draw covid-19 array diagram
- Common Oracle SQL statements
- Is there any way to bookmark the code in the visual studio project- Is there a way to bookmark code in a Visual Studio project?
- 九章云极DataCanvas公司摘获「第五届数字金融创新大赛」最高荣誉!
- Appium practice | make the test faster, more stable and more reliable (I): slice test
- 组织实战攻防演练的5个阶段
- JS variable
- Gavin teacher's perception of transformer live class - rasa project actual combat e-commerce retail customer service intelligent business dialogue robot microservice code analysis and dialogue experim
- 为什么很多人对技术债务产生误解
- Servicemesh mainly solves three pain points
猜你喜欢
随机推荐
Can I specify a path in an attribute to map a property in my class to a child property in my JSON?
Section 1: (3) logic chip process substrate selection
National meteorological data / rainfall distribution data / solar radiation data /npp net primary productivity data / vegetation coverage data
深入解析Kubebuilder
Liste des hôtes d'inventaire dans ansible (je vous souhaite des fleurs et de la romance sans fin)
When knative meets webassembly
深入解析Kubebuilder
Basic knowledge of road loss of 3GPP channel model
Common Oracle SQL statements
[Yugong series] go teaching course 005 variables in July 2022
AttributeError: module ‘torch._C‘ has no attribute ‘_cuda_setDevice‘
Introduction to namespace Basics
STM32F103 realize IAP online upgrade application
File upload vulnerability summary
npm ERR! 400 Bad Request - PUT xxx - “devDependencies“ dep “xx“ is not a valid dependency name
Flask project uses flask socketio exception: typeerror: function() argument 1 must be code, not str
Ansible概述和模块解释(你刚走过了今天,而扑面而来的却是昨天)
架构实战训练营|课后作业|模块 6
计数排序基础思路
Poor math students who once dropped out of school won the fields award this year