当前位置:网站首页>最全常用高数公式
最全常用高数公式
2022-07-06 22:42:00 【全栈O-Jay】
文章目录
1 等价无穷小 ( x → 0 x\to 0 x→0)
s i n x ∼ x sinx\sim x sinx∼x, t a n x ∼ x tanx\sim x tanx∼x, a r c s i n x ∼ x arcsinx\sim x arcsinx∼x, a r c t a n x ∼ x arctanx\sim x arctanx∼x, e x − 1 ∼ x e^x -1\sim x ex−1∼x, I n ( 1 + x ) ∼ x In(1+x)\sim x In(1+x)∼x,
a x − 1 = e x I n a − 1 ∼ x I n a a^x-1= e^{xIna}-1\sim xIna ax−1=exIna−1∼xIna, 1 − c o s x ∼ 1 2 x 2 1-cosx\sim \frac{1}{2}x^2 1−cosx∼21x2, ( 1 + x ) a − 1 ∼ a x (1+x)^a -1\sim ax (1+x)a−1∼ax,
小 + 大 ∼ 大 小+大\sim 大 小+大∼大, ∫ 0 x f ( t ) d t ∼ x \int_{0}^{x}f(t)dt\sim x ∫0xf(t)dt∼x
2 常用公式
2.1 和式夹逼准则的两个思路
n → ∞ : n ⋅ u m i n ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x n → 有 限 : 1 ⋅ u m a x ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x n\to \infty : n\cdot u_{min}\leq \sum\limits_{i=1}^{n}u_i \leq n\cdot u_{max}\\ n\to 有限 : 1\cdot u_{max}\leq \sum\limits_{i=1}^{n}u_i \leq n\cdot u_{max} n→∞:n⋅umin≤i=1∑nui≤n⋅umaxn→有限:1⋅umax≤i=1∑nui≤n⋅umax
2.2 小基础
- ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^3 = a^3+ 3a^2b + 3ab^2 + b^3 (a+b)3=a3+3a2b+3ab2+b3
- a 3 − b 3 = ( a − b ) ( a 2 + a b + b 3 ) a^3-b^3 = (a-b)(a^2 + ab + b^3) a3−b3=(a−b)(a2+ab+b3)
- ( a + b ) n = ∑ k = 0 n C n k a n − k b k (a+b)^n = \sum\limits_{k=0}^{n}C_n^ka^{n-k}b^k (a+b)n=k=0∑nCnkan−kbk
- ∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{k=1}^{n}k^2 = \frac{n(n+1)(2n+1)}{6} k=1∑nk2=6n(n+1)(2n+1)
- ∑ n = 1 ∞ 1 n 2 = π 2 6 \sum\limits_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi ^2}{6} n=1∑∞n21=6π2
2.3 一元二次方程解
X 1 , 2 = − b ± b 2 − 4 a c 2 a , X 1 + X 2 = − b a , X 1 X 2 = a c , 顶 点 : ( − b 2 a , c − b 2 4 a ) X_{1,2} = \frac{-b\pm \sqrt{b^2-4ac}}{2a}, X_1 + X_2 = -\frac{b}{a}, X_1X_2 = \frac{a}{c},\\顶点: (-\frac{b}{2a} , c-\frac{b^2}{4a}) X1,2=2a−b±b2−4ac,X1+X2=−ab,X1X2=ca,顶点:(−2ab,c−4ab2)
3 * \bigstar *常用展开公式 * \bigstar *
- e x = 1 + x + x 2 2 ! + ⋯ = ∑ n = 0 ∞ x n n ! e^x = 1+x+\frac{x^2}{2!}+\cdots =\sum\limits_{n=0}^{\infty}\frac{x^n}{n!} ex=1+x+2!x2+⋯=n=0∑∞n!xn
- I n ( 1 + x ) = x − x 2 2 + ⋯ = ∑ n = 0 ∞ ( − 1 ) n − 1 x n n ( − 1 < x ≤ 1 ) In(1+x) = x-\frac{x^2}{2}+\cdots =\sum\limits_{n=0}^{\infty}(-1)^{n-1}\frac{x^n}{n}\quad (-1<x\leq 1) In(1+x)=x−2x2+⋯=n=0∑∞(−1)n−1nxn(−1<x≤1)
- I n ( 1 − x ) = − ∑ n = 0 ∞ x n n ( − 1 < x ≤ 1 ) In(1-x) = -\sum\limits_{n=0}^{\infty}\frac{x^n}{n}\quad (-1<x\leq 1) In(1−x)=−n=0∑∞nxn(−1<x≤1)
- 1 1 − x = 1 + x + x 2 + ⋯ = ∑ n = 0 ∞ x n ∣ x ∣ < 1 \frac{1}{1-x} = 1+x+x^2+\cdots =\sum\limits_{n=0}^{\infty}x^n\quad \mid x\mid <1 1−x1=1+x+x2+⋯=n=0∑∞xn∣x∣<1
- s i n x = x − x 3 3 ! + ⋯ = ∑ n = 0 − ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sinx = x-\frac{x^3}{3!}+\cdots =\sum\limits_{n=0}^{-\infty}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!} sinx=x−3!x3+⋯=n=0∑−∞(−1)n(2n+1)!x2n+1
- c o s x = 1 − x 2 2 ! + ⋯ = ∑ n = 0 − ∞ ( − 1 ) n x 2 n ( 2 n ) ! cosx = 1-\frac{x^2}{2!}+\cdots =\sum\limits_{n=0}^{-\infty}(-1)^{n}\frac{x^{2n}}{(2n)!} cosx=1−2!x2+⋯=n=0∑−∞(−1)n(2n)!x2n
- t a n x = x + x 3 3 + O ( x 3 ) tanx = x+\frac{x^3}{3}+O(x^3) tanx=x+3x3+O(x3)
- a r c s i n x = x + x 3 6 + O ( x 3 ) arcsinx = x+\frac{x^3}{6}+O(x^3) arcsinx=x+6x3+O(x3)
- a r c t a n x = x − x 3 3 + O ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 arctanx = x-\frac{x^3}{3}+O(x^3) = \sum\limits_{n=0}^{\infty}(-1)^{n}\frac{x^{2n+1}}{2n+1} arctanx=x−3x3+O(x3)=n=0∑∞(−1)n2n+1x2n+1
- e x − e − x 2 = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! \frac{e^x-e^{-x}}{2} = \sum\limits_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!} 2ex−e−x=n=0∑∞(2n+1)!x2n+1
- e x + e − x 2 = ∑ n = 0 ∞ x 2 n ( 2 n ) ! \frac{e^x+e^{-x}}{2} = \sum\limits_{n=0}^{\infty}\frac{x^{2n}}{(2n)!} 2ex+e−x=n=0∑∞(2n)!x2n
- ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 x 2 + O ( x 2 ) (1+x)^a = 1+ax+\frac{a(a-1)}2{x^2} + O(x^2) (1+x)a=1+ax+2a(a−1)x2+O(x2)
4 常用不等式
- a r c t a n x < x < a r c s i n x ( 0 ≤ x ≤ 1 ) arctanx < x < arcsinx \quad (0\leq x\leq 1) arctanx<x<arcsinx(0≤x≤1)
- e x ≥ x + 1 ( ∀ x ) e^x \geq x+1\quad (∀x) ex≥x+1(∀x)
- x − 1 ≥ I n x ( x > 0 ) x-1 \geq Inx\quad (x>0) x−1≥Inx(x>0)
- x > s i n x ( x > 0 ) x> sinx\quad (x>0) x>sinx(x>0)
- 1 1 + x < I n ( 1 + 1 x ) < 1 x \frac{1}{1+x}<In(1+\frac{1}{x})<\frac{1}{x} 1+x1<In(1+x1)<x1
- x 1 + x < I n ( 1 + x ) < x \frac{x}{1+x}<In(1+x)<x 1+xx<In(1+x)<x
- a b ≤ a + b 2 ≤ a 2 + b 2 2 ( a , b > 0 ) \sqrt{ab}\leq \frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}\quad (a,b>0) ab≤2a+b≤2a2+b2(a,b>0)
- a b c 3 ≤ a + b + c 3 ( a , b , c > 0 ) \sqrt[3]{abc}\leq \frac{a+b+c}{3}\quad (a,b,c>0) 3abc≤3a+b+c(a,b,c>0)
- ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ \mid a\pm b\mid \leq \mid a\mid + \mid b\mid ∣a±b∣≤∣a∣+∣b∣
- ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ \mid \mid a\mid - \mid b\mid \mid \leq \mid a-b\mid ∣∣a∣−∣b∣∣≤∣a−b∣
- ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \mid \int_a^bf(x)dx\mid \leq \int_a^b\mid f(x)\mid dx ∣∫abf(x)dx∣≤∫ab∣f(x)∣dx
5 三角变换
- 诱导公式法则:奇变偶不变,符号看象限!
- s i n 2 x = 2 s i n x c o s x sin2x = 2sinxcosx sin2x=2sinxcosx
- c o s 2 x = c o s 2 x − s i n 2 x = 1 − 2 s i n 2 x = 2 c o s 2 − 1 cos2x = cos^2x - sin^2x = 1-2sin^2x = 2cos^2-1 cos2x=cos2x−sin2x=1−2sin2x=2cos2−1
- s i n 3 x = − 4 s i n 3 x + 3 s i n x sin3x = -4sin^3x + 3sinx sin3x=−4sin3x+3sinx
- c o s 3 x = 4 c o s 2 x − 3 c o s x cos3x = 4cos^2x - 3cosx cos3x=4cos2x−3cosx
- s i n x ⋅ c o s y = 1 2 [ s i n ( x + y ) + s i n ( x − y ) ] sinx\cdot cosy = \frac{1}{2}[sin(x+y)+sin(x-y)] sinx⋅cosy=21[sin(x+y)+sin(x−y)]
- s i n 2 x 2 = 1 2 ( 1 − c o s x ) sin^2\frac{x}{2} = \frac{1}{2}(1-cosx) sin22x=21(1−cosx)
- c o s 2 x 2 = 1 2 ( 1 + c o s x ) cos^2\frac{x}{2} = \frac{1}{2}(1+cosx) cos22x=21(1+cosx)
- t a n 2 x 2 = 1 − c o s x s i n x = s i n x 1 + c o s x tan^2\frac{x}{2} = \frac{1-cosx}{sinx} = \frac{sinx}{1+cosx} tan22x=sinx1−cosx=1+cosxsinx
- s i n x = 2 t a n x 2 1 + t a n 2 x 2 sinx = \frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} sinx=1+tan22x2tan2x
- c o s x = 1 − t a n 2 x 2 1 + t a n 2 x 2 cosx = \frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}} cosx=1+tan22x1−tan22x
- t a n 2 x = 2 t a n x 1 − t a n 2 x tan2x = \frac{2tanx}{1-tan^2x} tan2x=1−tan2x2tanx
- c o t 2 x = c o t 2 x − 1 2 c o t x cot2x = \frac{cot^2x - 1}{2cotx} cot2x=2cotxcot2x−1
- 1 + t a n 2 x = s e c 2 x 1+tan^2x = sec^2x 1+tan2x=sec2x
- 1 + c o t 2 x = c s c 2 x 1+cot^2x = csc^2x 1+cot2x=csc2x
6 * \bigstar *微分 * \bigstar *
6.1 定义式
- f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0) = \lim\limits_{\Delta x\to{0}}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim\limits_{x\to{x_0}}\frac{f(x) - f(x_0)}{x-x_0} f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)=x→x0limx−x0f(x)−f(x0)
- f ( n ) ( x 0 ) = lim x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 f^{(n)}(x_0) = \lim\limits_{x\to{x_0}} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x-x_0} f(n)(x0)=x→x0limx−x0f(n−1)(x)−f(n−1)(x0)
- 连续 ⇏ \nRightarrow ⇏ 可导,可导 ⇒ \Rightarrow ⇒ 连续,可导 ⇔ \Leftrightarrow ⇔ 可微
6.2 常用难记微分公式
- ( t a n x ) ′ = s e c 2 x (tanx)' = sec^2x (tanx)′=sec2x
- ( c o t x ) ′ = − c s c 2 x (cotx)' = -csc^2x (cotx)′=−csc2x
- ( s e c x ) ′ = s e c x t a n x , ( c s c x ) ′ = − c s c x c o t x (secx)' = secxtanx, (cscx)' = -cscxcotx (secx)′=secxtanx,(cscx)′=−cscxcotx
- ( a r c s i n x ) ′ = 1 1 − x 2 , ( a r c c o s x ) ′ = − 1 1 − x 2 (arcsinx)' = \frac{1}{\sqrt{1-x^2}},\quad (arccosx)' = -\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21,(arccosx)′=−1−x21
- ( a r c t a n x ) ′ = 1 1 + x 2 , ( a r c c o t x ) ′ = − 1 1 + x 2 (arctanx)' = \frac{1}{1+x^2},\quad (arccotx)' = -\frac{1}{1+x^2} (arctanx)′=1+x21,(arccotx)′=−1+x21
- ( I n ∣ c o s x ∣ ) ′ = − t a n x (In\mid cosx\mid)' = -tanx (In∣cosx∣)′=−tanx
- ( I n ∣ s i n x ∣ ) ′ = c o t x (In\mid sinx\mid)' = cotx (In∣sinx∣)′=cotx
- ( I n ∣ s e c x + t a n x ∣ ) ′ = s e c x (In\mid secx + tanx\mid)' = secx (In∣secx+tanx∣)′=secx
- ( I n ∣ c s c x − c o t x ∣ ) ′ = c s c x (In\mid cscx - cotx\mid)' = cscx (In∣cscx−cotx∣)′=cscx
- [ I n ( x + x 2 ± a 2 ) ] ′ = 1 x 2 ± a 2 [In(x+\sqrt{x^2\pm a^2})]' = \frac{1}{\sqrt{x^2\pm a^2}} [In(x+x2±a2)]′=x2±a21
- d x 2 = ( d x ) 2 dx^2 = (dx)^2 dx2=(dx)2
- d ( x 2 ) = 2 x d x d(x^2) = 2xdx d(x2)=2xdx
- ( u v w ) ′ = u ′ v w + u v ′ w + u v w ′ (uvw)' = u'vw+uv'w+uvw' (uvw)′=u′vw+uv′w+uvw′
- ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)} = \sum\limits_{k=0}^{n}C_n^ku^{(n-k)}v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)
6.3 分析函数关注点
定义域、奇偶性、对称性、图形变换、单调性、极值、最值、凹凸性、拐点、三种渐近线(铅垂、水平、斜)
7 * \bigstar *积分 * \bigstar *
7.1 定积分定义
- ∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( a + b − a n i ) b − a n \int_a^bf(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(a+\frac{b-a}{n}i)\frac{b-a}{n} ∫abf(x)dx=n→∞limi=1∑∞f(a+nb−ai)nb−a
- ∫ 0 1 f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( i n ) 1 n \int_0^1f(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(\frac{i}{n})\frac{1}{n} ∫01f(x)dx=n→∞limi=1∑∞f(ni)n1
- ∫ 0 x f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( x n i ) x n \int_0^xf(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(\frac{x}{n}i)\frac{x}{n} ∫0xf(x)dx=n→∞limi=1∑∞f(nxi)nx
7.2 基本积分表
- ∫ x k d x = 1 k + 1 x k + 1 + C \int x^k dx = \frac{1}{k+1}x^{k+1} + C ∫xkdx=k+11xk+1+C
- ∫ a x d x = a x I n a + C \int a^x dx = \frac{a^x}{Ina} +C ∫axdx=Inaax+C
- ∫ s i n x d x = − c o s + C \int sinx dx = -cos +C ∫sinxdx=−cos+C
- ∫ c o s d x = s i n x + C \int cos dx = sinx +C ∫cosdx=sinx+C
- ∫ t a n x d x = − I n ∣ c o s x ∣ + C \int tanx dx = -In\mid cosx\mid +C ∫tanxdx=−In∣cosx∣+C
- ∫ c o t x d x = I n ∣ s i n x ∣ + C \int cotx dx = In\mid sinx\mid +C ∫cotxdx=In∣sinx∣+C
- ∫ s e c x d x = I n ∣ s e c x + t a n x ∣ + C \int secx dx = In\mid secx + tanx\mid +C ∫secxdx=In∣secx+tanx∣+C
- ∫ c s c x d x = I n ∣ c s c x − c o t x ∣ + C \int cscx dx = In\mid cscx - cotx\mid +C ∫cscxdx=In∣cscx−cotx∣+C
- ∫ s e c 2 x d x = t a n x + C \int sec^2x dx = tanx +C ∫sec2xdx=tanx+C
- ∫ c s c 2 x d x = − c o t x + C \int csc^2x dx = -cotx +C ∫csc2xdx=−cotx+C
- ∫ s e c x t a n x d x = s e c x + C \int secxtanx dx = secx +C ∫secxtanxdx=secx+C
- ∫ c s c x c o t x d x = − c s c x + C \int cscxcotx dx = -cscx +C ∫cscxcotxdx=−cscx+C
- ∫ 1 1 − x 2 d x = a r c s i n x + C \int \frac{1}{\sqrt{1-x^2}} dx = arcsinx +C ∫1−x21dx=arcsinx+C
- ∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int \frac{1}{\sqrt{a^2-x^2}} dx = arcsin\frac{x}{a} +C ∫a2−x21dx=arcsinax+C
- ∫ 1 1 + x 2 d x = a r c t a n x + C \int \frac{1}{1+x^2} dx = arctanx +C ∫1+x21dx=arctanx+C
- ∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C ( a > 0 ) \int \frac{1}{a^2+x^2} dx = \frac{1}{a}arctan\frac{x}{a} +C\quad (a>0) ∫a2+x21dx=a1arctanax+C(a>0)
- ∫ 1 x 2 + a 2 d x = I n ( x + x 2 + a 2 ) + C \int \frac{1}{\sqrt{x^2+a^2}} dx = In(x+\sqrt{x^2+a^2}) +C ∫x2+a21dx=In(x+x2+a2)+C
- ∫ 1 x 2 − a 2 d x = I n ( x + x 2 − a 2 ) + C ( ∣ x ∣ > ∣ a ∣ ) \int \frac{1}{\sqrt{x^2-a^2}} dx = In(x+\sqrt{x^2-a^2}) +C\quad (\mid x\mid>\mid a\mid) ∫x2−a21dx=In(x+x2−a2)+C(∣x∣>∣a∣)
- ∫ 1 x 2 − a 2 d x = 1 2 a I n ∣ x − a x + a ∣ + C \int \frac{1}{x^2-a^2} dx = \frac{1}{2a}In\mid \frac{x-a}{x+a}\mid +C ∫x2−a21dx=2a1In∣x+ax−a∣+C
- ∫ 1 a 2 − x 2 d x = 1 2 a I n ∣ x + a x − a ∣ + C \int \frac{1}{a^2-x^2} dx = \frac{1}{2a}In\mid \frac{x+a}{x-a}\mid +C ∫a2−x21dx=2a1In∣x−ax+a∣+C
- ∫ a 2 − x 2 d x = a 2 2 a r c s i n x a + x 2 a 2 − x 2 + C ( ∣ x ∣ < a ) \int \sqrt{a^2-x^2} dx = \frac{a^2}{2}arcsin\frac{x}{a} + \frac{x}{2}\sqrt{a^2-x^2} +C\quad (\mid x\mid<a) ∫a2−x2dx=2a2arcsinax+2xa2−x2+C(∣x∣<a)
- ∫ s i n 2 x d x = x 2 − s i n 2 x 4 + C \int sin^2x dx = \frac{x}{2} -\frac{sin2x}{4} +C ∫sin2xdx=2x−4sin2x+C
- ∫ c o s 2 x d x = x 2 + s i n 2 x 4 + C \int cos^2x dx = \frac{x}{2} +\frac{sin2x}{4} +C ∫cos2xdx=2x+4sin2x+C
7.3 常用积分公式
- ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^b f(x) dx = \int_a^b f(a+b-x) dx ∫abf(x)dx=∫abf(a+b−x)dx
- ∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_a^b f(x) dx = \frac{1}{2} \int_a^b [f(x)+f(a+b-x)] dx ∫abf(x)dx=21∫ab[f(x)+f(a+b−x)]dx
- ∫ a b f ( x ) d x = ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x \int_a^b f(x) dx = \int_a^{\frac{a+b}{2}} [f(x)+f(a+b-x)] dx ∫abf(x)dx=∫a2a+b[f(x)+f(a+b−x)]dx
- 点火公式: ∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x = n − 1 n n − 3 n − 2 ⋯ \int_0^\frac{\pi}{2}sin^nxdx = \int_0^\frac{\pi}{2}cos^nxdx = \frac{n-1}{n} \frac{n-3}{n-2} \cdots ∫02πsinnxdx=∫02πcosnxdx=nn−1n−2n−3⋯
- ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) \int_0^{\pi} xf(sinx) dx = \frac{\pi}{2}\int_0^{\pi} f(sinx) dx =\pi \int_0^{\frac{\pi}{2}} f(sinx) ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)
- ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \int_0^{\frac{\pi}{2}} f(sinx) dx = \int_0^{\frac{\pi}{2}} f(cosx) dx ∫02πf(sinx)dx=∫02πf(cosx)dx
- ∫ 0 π 2 f ( s i n x , c o s x ) d x = ∫ 0 π 2 f ( c o s x , s i n x ) d x \int_0^{\frac{\pi}{2}} f(sinx, cosx) dx = \int_0^{\frac{\pi}{2}} f(cosx,sinx) dx ∫02πf(sinx,cosx)dx=∫02πf(cosx,sinx)dx
- ∫ a b f ( x ) d x = ∫ − π 2 π 2 f ( a + b 2 + b − a 2 s i n t ) ⋅ b − a 2 c o s t d t , ( x − a + b 2 = b − a 2 s i n t ) \int_a^b f(x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\frac{a+b}{2} + \frac{b-a}{2} sint)\cdot \frac{b-a}{2}cost dt, \quad (x-\frac{a+b}{2} = \frac{b-a}{2}sint) ∫abf(x)dx=∫−2π2πf(2a+b+2b−asint)⋅2b−acostdt,(x−2a+b=2b−asint)
- ∫ a b f ( x ) d x = ∫ 0 1 ( b − a ) f [ a + ( b − a ) t ] d t , ( x − a = ( b − a ) t ) \int_a^b f(x) dx = \int_{0}^{1} (b-a) f[a+(b-a)t] dt, \quad (x-a = (b-a)t) ∫abf(x)dx=∫01(b−a)f[a+(b−a)t]dt,(x−a=(b−a)t)
- ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^a f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx ∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx
- ∫ 0 n π x ∣ s i n x ∣ d x = n 2 π \int_0^{n\pi} x\mid sinx\mid dx = n^2\pi ∫0nπx∣sinx∣dx=n2π
7.4 积分常用方法
凑微分、换元、分部积分、通分
全部手打,如果觉得有帮助帮忙点个赞啦蟹蟹!之后会继续补全高数下的公式,可以先收藏哦。
边栏推荐
- U++4 接口 学习笔记
- AttributeError: module ‘torch._ C‘ has no attribute ‘_ cuda_ setDevice‘
- Detect when a tab bar item is pressed
- Gavin teacher's perception of transformer live class - rasa project actual combat e-commerce retail customer service intelligent business dialogue robot microservice code analysis and dialogue experim
- You can't sell the used lithography machine to China! The United States unreasonably pressured the Dutch ASML, and domestic chips were suppressed again
- What work items do programmers hate most in their daily work?
- mpf2_ Linear programming_ CAPM_ sharpe_ Arbitrage Pricin_ Inversion Gauss Jordan_ Statsmodel_ Pulp_ pLU_ Cholesky_ QR_ Jacobi
- STM32F103实现IAP在线升级应用程序
- acwing 843. N-queen problem
- Chapter 9 Yunji datacanvas company has been ranked top 3 in China's machine learning platform market
猜你喜欢
Chapter 9 Yunji datacanvas was rated as 36 krypton "the hard core technology enterprise most concerned by investors"
Function pointer and pointer function in C language
JS also exports Excel
Oracle - views and sequences
JDBC link Oracle reference code
装饰器基础学习02
3GPP信道模型路损基础知识
Meow, come, come: do you really know if, if else
九章云极DataCanvas公司摘获「第五届数字金融创新大赛」最高荣誉!
Gavin teacher's perception of transformer live class - rasa project actual combat e-commerce retail customer service intelligent business dialogue robot microservice code analysis and dialogue experim
随机推荐
动态生成表格
Pointer and array are input in function to realize reverse order output
Gpt-3 is a peer review online when it has been submitted for its own research
Some understandings about 01 backpacker
Thesis landing strategy | how to get started quickly in academic thesis writing
A picture to understand! Why did the school teach you coding but still not
If you‘re running pod install manually, make sure flutter pub get is executed first.
Windows are not cheap things
How to design API interface and realize unified format return?
Oracle -- 视图与序列
全国气象数据/降雨量分布数据/太阳辐射数据/NPP净初级生产力数据/植被覆盖度数据
Ansible中的inventory主机清单(预祝你我有数不尽的鲜花和浪漫)
acwing 843. n-皇后问题
【数模】Matlab allcycles()函数的源代码(2021a之前版本没有)
深入解析Kubebuilder
Monitoring cannot be started after Oracle modifies the computer name
Ansible概述和模块解释(你刚走过了今天,而扑面而来的却是昨天)
【736. Lisp 语法解析】
Function pointer and pointer function in C language
A line of R code draws the population pyramid