当前位置:网站首页>最全常用高数公式
最全常用高数公式
2022-07-06 22:42:00 【全栈O-Jay】
文章目录
1 等价无穷小 ( x → 0 x\to 0 x→0)
s i n x ∼ x sinx\sim x sinx∼x, t a n x ∼ x tanx\sim x tanx∼x, a r c s i n x ∼ x arcsinx\sim x arcsinx∼x, a r c t a n x ∼ x arctanx\sim x arctanx∼x, e x − 1 ∼ x e^x -1\sim x ex−1∼x, I n ( 1 + x ) ∼ x In(1+x)\sim x In(1+x)∼x,
a x − 1 = e x I n a − 1 ∼ x I n a a^x-1= e^{xIna}-1\sim xIna ax−1=exIna−1∼xIna, 1 − c o s x ∼ 1 2 x 2 1-cosx\sim \frac{1}{2}x^2 1−cosx∼21x2, ( 1 + x ) a − 1 ∼ a x (1+x)^a -1\sim ax (1+x)a−1∼ax,
小 + 大 ∼ 大 小+大\sim 大 小+大∼大, ∫ 0 x f ( t ) d t ∼ x \int_{0}^{x}f(t)dt\sim x ∫0xf(t)dt∼x
2 常用公式
2.1 和式夹逼准则的两个思路
n → ∞ : n ⋅ u m i n ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x n → 有 限 : 1 ⋅ u m a x ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x n\to \infty : n\cdot u_{min}\leq \sum\limits_{i=1}^{n}u_i \leq n\cdot u_{max}\\ n\to 有限 : 1\cdot u_{max}\leq \sum\limits_{i=1}^{n}u_i \leq n\cdot u_{max} n→∞:n⋅umin≤i=1∑nui≤n⋅umaxn→有限:1⋅umax≤i=1∑nui≤n⋅umax
2.2 小基础
- ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^3 = a^3+ 3a^2b + 3ab^2 + b^3 (a+b)3=a3+3a2b+3ab2+b3
- a 3 − b 3 = ( a − b ) ( a 2 + a b + b 3 ) a^3-b^3 = (a-b)(a^2 + ab + b^3) a3−b3=(a−b)(a2+ab+b3)
- ( a + b ) n = ∑ k = 0 n C n k a n − k b k (a+b)^n = \sum\limits_{k=0}^{n}C_n^ka^{n-k}b^k (a+b)n=k=0∑nCnkan−kbk
- ∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{k=1}^{n}k^2 = \frac{n(n+1)(2n+1)}{6} k=1∑nk2=6n(n+1)(2n+1)
- ∑ n = 1 ∞ 1 n 2 = π 2 6 \sum\limits_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi ^2}{6} n=1∑∞n21=6π2
2.3 一元二次方程解
X 1 , 2 = − b ± b 2 − 4 a c 2 a , X 1 + X 2 = − b a , X 1 X 2 = a c , 顶 点 : ( − b 2 a , c − b 2 4 a ) X_{1,2} = \frac{-b\pm \sqrt{b^2-4ac}}{2a}, X_1 + X_2 = -\frac{b}{a}, X_1X_2 = \frac{a}{c},\\顶点: (-\frac{b}{2a} , c-\frac{b^2}{4a}) X1,2=2a−b±b2−4ac,X1+X2=−ab,X1X2=ca,顶点:(−2ab,c−4ab2)
3 * \bigstar *常用展开公式 * \bigstar *
- e x = 1 + x + x 2 2 ! + ⋯ = ∑ n = 0 ∞ x n n ! e^x = 1+x+\frac{x^2}{2!}+\cdots =\sum\limits_{n=0}^{\infty}\frac{x^n}{n!} ex=1+x+2!x2+⋯=n=0∑∞n!xn
- I n ( 1 + x ) = x − x 2 2 + ⋯ = ∑ n = 0 ∞ ( − 1 ) n − 1 x n n ( − 1 < x ≤ 1 ) In(1+x) = x-\frac{x^2}{2}+\cdots =\sum\limits_{n=0}^{\infty}(-1)^{n-1}\frac{x^n}{n}\quad (-1<x\leq 1) In(1+x)=x−2x2+⋯=n=0∑∞(−1)n−1nxn(−1<x≤1)
- I n ( 1 − x ) = − ∑ n = 0 ∞ x n n ( − 1 < x ≤ 1 ) In(1-x) = -\sum\limits_{n=0}^{\infty}\frac{x^n}{n}\quad (-1<x\leq 1) In(1−x)=−n=0∑∞nxn(−1<x≤1)
- 1 1 − x = 1 + x + x 2 + ⋯ = ∑ n = 0 ∞ x n ∣ x ∣ < 1 \frac{1}{1-x} = 1+x+x^2+\cdots =\sum\limits_{n=0}^{\infty}x^n\quad \mid x\mid <1 1−x1=1+x+x2+⋯=n=0∑∞xn∣x∣<1
- s i n x = x − x 3 3 ! + ⋯ = ∑ n = 0 − ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sinx = x-\frac{x^3}{3!}+\cdots =\sum\limits_{n=0}^{-\infty}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!} sinx=x−3!x3+⋯=n=0∑−∞(−1)n(2n+1)!x2n+1
- c o s x = 1 − x 2 2 ! + ⋯ = ∑ n = 0 − ∞ ( − 1 ) n x 2 n ( 2 n ) ! cosx = 1-\frac{x^2}{2!}+\cdots =\sum\limits_{n=0}^{-\infty}(-1)^{n}\frac{x^{2n}}{(2n)!} cosx=1−2!x2+⋯=n=0∑−∞(−1)n(2n)!x2n
- t a n x = x + x 3 3 + O ( x 3 ) tanx = x+\frac{x^3}{3}+O(x^3) tanx=x+3x3+O(x3)
- a r c s i n x = x + x 3 6 + O ( x 3 ) arcsinx = x+\frac{x^3}{6}+O(x^3) arcsinx=x+6x3+O(x3)
- a r c t a n x = x − x 3 3 + O ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 arctanx = x-\frac{x^3}{3}+O(x^3) = \sum\limits_{n=0}^{\infty}(-1)^{n}\frac{x^{2n+1}}{2n+1} arctanx=x−3x3+O(x3)=n=0∑∞(−1)n2n+1x2n+1
- e x − e − x 2 = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! \frac{e^x-e^{-x}}{2} = \sum\limits_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!} 2ex−e−x=n=0∑∞(2n+1)!x2n+1
- e x + e − x 2 = ∑ n = 0 ∞ x 2 n ( 2 n ) ! \frac{e^x+e^{-x}}{2} = \sum\limits_{n=0}^{\infty}\frac{x^{2n}}{(2n)!} 2ex+e−x=n=0∑∞(2n)!x2n
- ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 x 2 + O ( x 2 ) (1+x)^a = 1+ax+\frac{a(a-1)}2{x^2} + O(x^2) (1+x)a=1+ax+2a(a−1)x2+O(x2)
4 常用不等式
- a r c t a n x < x < a r c s i n x ( 0 ≤ x ≤ 1 ) arctanx < x < arcsinx \quad (0\leq x\leq 1) arctanx<x<arcsinx(0≤x≤1)
- e x ≥ x + 1 ( ∀ x ) e^x \geq x+1\quad (∀x) ex≥x+1(∀x)
- x − 1 ≥ I n x ( x > 0 ) x-1 \geq Inx\quad (x>0) x−1≥Inx(x>0)
- x > s i n x ( x > 0 ) x> sinx\quad (x>0) x>sinx(x>0)
- 1 1 + x < I n ( 1 + 1 x ) < 1 x \frac{1}{1+x}<In(1+\frac{1}{x})<\frac{1}{x} 1+x1<In(1+x1)<x1
- x 1 + x < I n ( 1 + x ) < x \frac{x}{1+x}<In(1+x)<x 1+xx<In(1+x)<x
- a b ≤ a + b 2 ≤ a 2 + b 2 2 ( a , b > 0 ) \sqrt{ab}\leq \frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}\quad (a,b>0) ab≤2a+b≤2a2+b2(a,b>0)
- a b c 3 ≤ a + b + c 3 ( a , b , c > 0 ) \sqrt[3]{abc}\leq \frac{a+b+c}{3}\quad (a,b,c>0) 3abc≤3a+b+c(a,b,c>0)
- ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ \mid a\pm b\mid \leq \mid a\mid + \mid b\mid ∣a±b∣≤∣a∣+∣b∣
- ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ \mid \mid a\mid - \mid b\mid \mid \leq \mid a-b\mid ∣∣a∣−∣b∣∣≤∣a−b∣
- ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \mid \int_a^bf(x)dx\mid \leq \int_a^b\mid f(x)\mid dx ∣∫abf(x)dx∣≤∫ab∣f(x)∣dx
5 三角变换
- 诱导公式法则:奇变偶不变,符号看象限!
- s i n 2 x = 2 s i n x c o s x sin2x = 2sinxcosx sin2x=2sinxcosx
- c o s 2 x = c o s 2 x − s i n 2 x = 1 − 2 s i n 2 x = 2 c o s 2 − 1 cos2x = cos^2x - sin^2x = 1-2sin^2x = 2cos^2-1 cos2x=cos2x−sin2x=1−2sin2x=2cos2−1
- s i n 3 x = − 4 s i n 3 x + 3 s i n x sin3x = -4sin^3x + 3sinx sin3x=−4sin3x+3sinx
- c o s 3 x = 4 c o s 2 x − 3 c o s x cos3x = 4cos^2x - 3cosx cos3x=4cos2x−3cosx
- s i n x ⋅ c o s y = 1 2 [ s i n ( x + y ) + s i n ( x − y ) ] sinx\cdot cosy = \frac{1}{2}[sin(x+y)+sin(x-y)] sinx⋅cosy=21[sin(x+y)+sin(x−y)]
- s i n 2 x 2 = 1 2 ( 1 − c o s x ) sin^2\frac{x}{2} = \frac{1}{2}(1-cosx) sin22x=21(1−cosx)
- c o s 2 x 2 = 1 2 ( 1 + c o s x ) cos^2\frac{x}{2} = \frac{1}{2}(1+cosx) cos22x=21(1+cosx)
- t a n 2 x 2 = 1 − c o s x s i n x = s i n x 1 + c o s x tan^2\frac{x}{2} = \frac{1-cosx}{sinx} = \frac{sinx}{1+cosx} tan22x=sinx1−cosx=1+cosxsinx
- s i n x = 2 t a n x 2 1 + t a n 2 x 2 sinx = \frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} sinx=1+tan22x2tan2x
- c o s x = 1 − t a n 2 x 2 1 + t a n 2 x 2 cosx = \frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}} cosx=1+tan22x1−tan22x
- t a n 2 x = 2 t a n x 1 − t a n 2 x tan2x = \frac{2tanx}{1-tan^2x} tan2x=1−tan2x2tanx
- c o t 2 x = c o t 2 x − 1 2 c o t x cot2x = \frac{cot^2x - 1}{2cotx} cot2x=2cotxcot2x−1
- 1 + t a n 2 x = s e c 2 x 1+tan^2x = sec^2x 1+tan2x=sec2x
- 1 + c o t 2 x = c s c 2 x 1+cot^2x = csc^2x 1+cot2x=csc2x
6 * \bigstar *微分 * \bigstar *
6.1 定义式
- f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0) = \lim\limits_{\Delta x\to{0}}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim\limits_{x\to{x_0}}\frac{f(x) - f(x_0)}{x-x_0} f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)=x→x0limx−x0f(x)−f(x0)
- f ( n ) ( x 0 ) = lim x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 f^{(n)}(x_0) = \lim\limits_{x\to{x_0}} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x-x_0} f(n)(x0)=x→x0limx−x0f(n−1)(x)−f(n−1)(x0)
- 连续 ⇏ \nRightarrow ⇏ 可导,可导 ⇒ \Rightarrow ⇒ 连续,可导 ⇔ \Leftrightarrow ⇔ 可微
6.2 常用难记微分公式
- ( t a n x ) ′ = s e c 2 x (tanx)' = sec^2x (tanx)′=sec2x
- ( c o t x ) ′ = − c s c 2 x (cotx)' = -csc^2x (cotx)′=−csc2x
- ( s e c x ) ′ = s e c x t a n x , ( c s c x ) ′ = − c s c x c o t x (secx)' = secxtanx, (cscx)' = -cscxcotx (secx)′=secxtanx,(cscx)′=−cscxcotx
- ( a r c s i n x ) ′ = 1 1 − x 2 , ( a r c c o s x ) ′ = − 1 1 − x 2 (arcsinx)' = \frac{1}{\sqrt{1-x^2}},\quad (arccosx)' = -\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21,(arccosx)′=−1−x21
- ( a r c t a n x ) ′ = 1 1 + x 2 , ( a r c c o t x ) ′ = − 1 1 + x 2 (arctanx)' = \frac{1}{1+x^2},\quad (arccotx)' = -\frac{1}{1+x^2} (arctanx)′=1+x21,(arccotx)′=−1+x21
- ( I n ∣ c o s x ∣ ) ′ = − t a n x (In\mid cosx\mid)' = -tanx (In∣cosx∣)′=−tanx
- ( I n ∣ s i n x ∣ ) ′ = c o t x (In\mid sinx\mid)' = cotx (In∣sinx∣)′=cotx
- ( I n ∣ s e c x + t a n x ∣ ) ′ = s e c x (In\mid secx + tanx\mid)' = secx (In∣secx+tanx∣)′=secx
- ( I n ∣ c s c x − c o t x ∣ ) ′ = c s c x (In\mid cscx - cotx\mid)' = cscx (In∣cscx−cotx∣)′=cscx
- [ I n ( x + x 2 ± a 2 ) ] ′ = 1 x 2 ± a 2 [In(x+\sqrt{x^2\pm a^2})]' = \frac{1}{\sqrt{x^2\pm a^2}} [In(x+x2±a2)]′=x2±a21
- d x 2 = ( d x ) 2 dx^2 = (dx)^2 dx2=(dx)2
- d ( x 2 ) = 2 x d x d(x^2) = 2xdx d(x2)=2xdx
- ( u v w ) ′ = u ′ v w + u v ′ w + u v w ′ (uvw)' = u'vw+uv'w+uvw' (uvw)′=u′vw+uv′w+uvw′
- ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)} = \sum\limits_{k=0}^{n}C_n^ku^{(n-k)}v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)
6.3 分析函数关注点
定义域、奇偶性、对称性、图形变换、单调性、极值、最值、凹凸性、拐点、三种渐近线(铅垂、水平、斜)
7 * \bigstar *积分 * \bigstar *
7.1 定积分定义
- ∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( a + b − a n i ) b − a n \int_a^bf(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(a+\frac{b-a}{n}i)\frac{b-a}{n} ∫abf(x)dx=n→∞limi=1∑∞f(a+nb−ai)nb−a
- ∫ 0 1 f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( i n ) 1 n \int_0^1f(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(\frac{i}{n})\frac{1}{n} ∫01f(x)dx=n→∞limi=1∑∞f(ni)n1
- ∫ 0 x f ( x ) d x = lim n → ∞ ∑ i = 1 ∞ f ( x n i ) x n \int_0^xf(x)dx =\lim\limits_{n\to{\infty}} \sum\limits_{i=1}^{\infty} f(\frac{x}{n}i)\frac{x}{n} ∫0xf(x)dx=n→∞limi=1∑∞f(nxi)nx
7.2 基本积分表
- ∫ x k d x = 1 k + 1 x k + 1 + C \int x^k dx = \frac{1}{k+1}x^{k+1} + C ∫xkdx=k+11xk+1+C
- ∫ a x d x = a x I n a + C \int a^x dx = \frac{a^x}{Ina} +C ∫axdx=Inaax+C
- ∫ s i n x d x = − c o s + C \int sinx dx = -cos +C ∫sinxdx=−cos+C
- ∫ c o s d x = s i n x + C \int cos dx = sinx +C ∫cosdx=sinx+C
- ∫ t a n x d x = − I n ∣ c o s x ∣ + C \int tanx dx = -In\mid cosx\mid +C ∫tanxdx=−In∣cosx∣+C
- ∫ c o t x d x = I n ∣ s i n x ∣ + C \int cotx dx = In\mid sinx\mid +C ∫cotxdx=In∣sinx∣+C
- ∫ s e c x d x = I n ∣ s e c x + t a n x ∣ + C \int secx dx = In\mid secx + tanx\mid +C ∫secxdx=In∣secx+tanx∣+C
- ∫ c s c x d x = I n ∣ c s c x − c o t x ∣ + C \int cscx dx = In\mid cscx - cotx\mid +C ∫cscxdx=In∣cscx−cotx∣+C
- ∫ s e c 2 x d x = t a n x + C \int sec^2x dx = tanx +C ∫sec2xdx=tanx+C
- ∫ c s c 2 x d x = − c o t x + C \int csc^2x dx = -cotx +C ∫csc2xdx=−cotx+C
- ∫ s e c x t a n x d x = s e c x + C \int secxtanx dx = secx +C ∫secxtanxdx=secx+C
- ∫ c s c x c o t x d x = − c s c x + C \int cscxcotx dx = -cscx +C ∫cscxcotxdx=−cscx+C
- ∫ 1 1 − x 2 d x = a r c s i n x + C \int \frac{1}{\sqrt{1-x^2}} dx = arcsinx +C ∫1−x21dx=arcsinx+C
- ∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int \frac{1}{\sqrt{a^2-x^2}} dx = arcsin\frac{x}{a} +C ∫a2−x21dx=arcsinax+C
- ∫ 1 1 + x 2 d x = a r c t a n x + C \int \frac{1}{1+x^2} dx = arctanx +C ∫1+x21dx=arctanx+C
- ∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C ( a > 0 ) \int \frac{1}{a^2+x^2} dx = \frac{1}{a}arctan\frac{x}{a} +C\quad (a>0) ∫a2+x21dx=a1arctanax+C(a>0)
- ∫ 1 x 2 + a 2 d x = I n ( x + x 2 + a 2 ) + C \int \frac{1}{\sqrt{x^2+a^2}} dx = In(x+\sqrt{x^2+a^2}) +C ∫x2+a21dx=In(x+x2+a2)+C
- ∫ 1 x 2 − a 2 d x = I n ( x + x 2 − a 2 ) + C ( ∣ x ∣ > ∣ a ∣ ) \int \frac{1}{\sqrt{x^2-a^2}} dx = In(x+\sqrt{x^2-a^2}) +C\quad (\mid x\mid>\mid a\mid) ∫x2−a21dx=In(x+x2−a2)+C(∣x∣>∣a∣)
- ∫ 1 x 2 − a 2 d x = 1 2 a I n ∣ x − a x + a ∣ + C \int \frac{1}{x^2-a^2} dx = \frac{1}{2a}In\mid \frac{x-a}{x+a}\mid +C ∫x2−a21dx=2a1In∣x+ax−a∣+C
- ∫ 1 a 2 − x 2 d x = 1 2 a I n ∣ x + a x − a ∣ + C \int \frac{1}{a^2-x^2} dx = \frac{1}{2a}In\mid \frac{x+a}{x-a}\mid +C ∫a2−x21dx=2a1In∣x−ax+a∣+C
- ∫ a 2 − x 2 d x = a 2 2 a r c s i n x a + x 2 a 2 − x 2 + C ( ∣ x ∣ < a ) \int \sqrt{a^2-x^2} dx = \frac{a^2}{2}arcsin\frac{x}{a} + \frac{x}{2}\sqrt{a^2-x^2} +C\quad (\mid x\mid<a) ∫a2−x2dx=2a2arcsinax+2xa2−x2+C(∣x∣<a)
- ∫ s i n 2 x d x = x 2 − s i n 2 x 4 + C \int sin^2x dx = \frac{x}{2} -\frac{sin2x}{4} +C ∫sin2xdx=2x−4sin2x+C
- ∫ c o s 2 x d x = x 2 + s i n 2 x 4 + C \int cos^2x dx = \frac{x}{2} +\frac{sin2x}{4} +C ∫cos2xdx=2x+4sin2x+C
7.3 常用积分公式
- ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^b f(x) dx = \int_a^b f(a+b-x) dx ∫abf(x)dx=∫abf(a+b−x)dx
- ∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_a^b f(x) dx = \frac{1}{2} \int_a^b [f(x)+f(a+b-x)] dx ∫abf(x)dx=21∫ab[f(x)+f(a+b−x)]dx
- ∫ a b f ( x ) d x = ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x \int_a^b f(x) dx = \int_a^{\frac{a+b}{2}} [f(x)+f(a+b-x)] dx ∫abf(x)dx=∫a2a+b[f(x)+f(a+b−x)]dx
- 点火公式: ∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x = n − 1 n n − 3 n − 2 ⋯ \int_0^\frac{\pi}{2}sin^nxdx = \int_0^\frac{\pi}{2}cos^nxdx = \frac{n-1}{n} \frac{n-3}{n-2} \cdots ∫02πsinnxdx=∫02πcosnxdx=nn−1n−2n−3⋯
- ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) \int_0^{\pi} xf(sinx) dx = \frac{\pi}{2}\int_0^{\pi} f(sinx) dx =\pi \int_0^{\frac{\pi}{2}} f(sinx) ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)
- ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \int_0^{\frac{\pi}{2}} f(sinx) dx = \int_0^{\frac{\pi}{2}} f(cosx) dx ∫02πf(sinx)dx=∫02πf(cosx)dx
- ∫ 0 π 2 f ( s i n x , c o s x ) d x = ∫ 0 π 2 f ( c o s x , s i n x ) d x \int_0^{\frac{\pi}{2}} f(sinx, cosx) dx = \int_0^{\frac{\pi}{2}} f(cosx,sinx) dx ∫02πf(sinx,cosx)dx=∫02πf(cosx,sinx)dx
- ∫ a b f ( x ) d x = ∫ − π 2 π 2 f ( a + b 2 + b − a 2 s i n t ) ⋅ b − a 2 c o s t d t , ( x − a + b 2 = b − a 2 s i n t ) \int_a^b f(x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\frac{a+b}{2} + \frac{b-a}{2} sint)\cdot \frac{b-a}{2}cost dt, \quad (x-\frac{a+b}{2} = \frac{b-a}{2}sint) ∫abf(x)dx=∫−2π2πf(2a+b+2b−asint)⋅2b−acostdt,(x−2a+b=2b−asint)
- ∫ a b f ( x ) d x = ∫ 0 1 ( b − a ) f [ a + ( b − a ) t ] d t , ( x − a = ( b − a ) t ) \int_a^b f(x) dx = \int_{0}^{1} (b-a) f[a+(b-a)t] dt, \quad (x-a = (b-a)t) ∫abf(x)dx=∫01(b−a)f[a+(b−a)t]dt,(x−a=(b−a)t)
- ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^a f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx ∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx
- ∫ 0 n π x ∣ s i n x ∣ d x = n 2 π \int_0^{n\pi} x\mid sinx\mid dx = n^2\pi ∫0nπx∣sinx∣dx=n2π
7.4 积分常用方法
凑微分、换元、分部积分、通分
全部手打,如果觉得有帮助帮忙点个赞啦蟹蟹!之后会继续补全高数下的公式,可以先收藏哦。
边栏推荐
- [ArcGIS tutorial] thematic map production - population density distribution map - population density analysis
- Ansible overview and module explanation (you just passed today, but yesterday came to your face)
- AttributeError: module ‘torch._C‘ has no attribute ‘_cuda_setDevice‘
- A row of code r shows the table of Cox regression model
- Mysql database (basic)
- U++4 接口 学习笔记
- Lessons and thoughts of the first SQL injection
- A simple and beautiful regression table is produced in one line of code~
- Common Oracle SQL statements
- acwing 843. N-queen problem
猜你喜欢
当 Knative 遇见 WebAssembly
IMS data channel concept of 5g vonr+
Lessons and thoughts of the first SQL injection
Analyse approfondie de kubebuilder
How to package the parsed Excel data into objects and write this object set into the database?
JS variable plus
A detailed explanation of head pose estimation [collect good articles]
Function pointer and pointer function in C language
Introduction to namespace Basics
Chapter 9 Yunji datacanvas was rated as 36 krypton "the hard core technology enterprise most concerned by investors"
随机推荐
Flask project uses flask socketio exception: typeerror: function() argument 1 must be code, not str
Flask项目使用flask-socketio异常:TypeError: function() argument 1 must be code, not str
3.基金的类型
A picture to understand! Why did the school teach you coding but still not
[digital analog] source code of MATLAB allcycles() function (not available before 2021a)
offer如何选择该考虑哪些因素
PLC Analog output analog output FB analog2nda (Mitsubishi FX3U)
U++ 元数据说明符 学习笔记
How to choose an offer and what factors should be considered
JS variable plus
Introduction to the PureMVC series
Terms used in the Web3 community
指针与数组在函数中输入实现逆序输出
Station B boss used my world to create convolutional neural network, Lecun forwarding! Burst the liver for 6 months, playing more than one million
Monitoring cannot be started after Oracle modifies the computer name
R descriptive statistics and hypothesis testing
【数模】Matlab allcycles()函数的源代码(2021a之前版本没有)
STM32 system timer flashing LED
01机器学习相关规定
【愚公系列】2022年7月 Go教学课程 005-变量