当前位置:网站首页>[Pytorch study notes] 11. Take a subset of the Dataset and shuffle the order of the Dataset (using Subset, random_split)
[Pytorch study notes] 11. Take a subset of the Dataset and shuffle the order of the Dataset (using Subset, random_split)
2022-08-05 05:42:00 【takedachia】
(pytorch版本:1.2)
我们在使用Dataset定义好数据集后,These problems are often encountered when dealing with datasets:如何把Dataset拆分成两个子集(as used to specify training and test sets、k折交叉验证等)?How to do random splits?How to scramble oneDataset内数据的顺序?
Dataset取子集、拆分
使用 torch.utils.data.Subset() Data sets can be subsetted.
传入一个Dataset,A sequence sliceindices,to get a subset.
1.我们可以传入一个range():
indices = range(18353) # Take the label as the first0个到第18352个数据
sub_imgs = torch.utils.data.Subset(imgs, indices)
len(imgs), len(sub_imgs)
2.interval can be taken:
indices = range(18353, 27153) # Take the label as the first18353个到第27152个数据
sub_imgs = torch.utils.data.Subset(imgs, indices)
len(imgs), len(sub_imgs)
3.可以传入一个List.有ListYou can use list comprehensions:
indices = [x for x in range(1234)]
sub_imgs = torch.utils.data.Subset(imgs, indices)
len(imgs), len(sub_imgs)
打乱Dataset内数据的顺序
We can pass in an out-of-order one directlyindexIt can achieve the purpose of out-of-order data set:
from torch import randperm
lenth = randperm(len(Leaf_dataset_train)).tolist() # Generate out-of-order indexes
rand_train = torch.utils.data.Subset(imgs, lenth)
# Show the first image、original label
X = rand_train[0]
plt.imshow(torch.transpose(X[0],0,2)), lenth[0]
After we shuffle the order, we can take subsets to perform on the datasetkfold cross-validation and other behaviors.
随机拆分Dataset
使用 torch.utils.data.random_split() The dataset can be split directly,Randomly divided into multiple portions.
可以传入一个List,注意传入的ListThe size of each subset is included in the sequence(数量),And the sum of these numbers must be等于传入Dataset的长度.
示例:
# 这里Leaf_dataset_trainmust be equal in size 17000+1353
train_set, test_set = torch.utils.data.random_split(Leaf_dataset_train, [17000, 1353])
print(len(train_set), len(test_set))
边栏推荐
- The University of Göttingen proposed CLIPSeg, a model that can perform three segmentation tasks at the same time
- CVPR2020 - 自校准卷积
- [Go through 8] Fully Connected Neural Network Video Notes
- 记我的第一篇CCF-A会议论文|在经历六次被拒之后,我的论文终于中啦,耶!
- 如何编写一个优雅的Shell脚本(三)
- Mesos learning
- 面向小白的深度学习代码库,一行代码实现30+中attention机制。
- 沁恒MCU从EVT中提取文件建立MounRiver独立工程
- MySQL
- ES6基础语法
猜你喜欢
【Multisim仿真】直流稳压电源设计报告
【MySQL】数据库多表链接的查询方式
Mesos learning
el-pagination左右箭头替换成文字上一页和下一页
【Pytorch学习笔记】10.如何快速创建一个自己的Dataset数据集对象(继承Dataset类并重写对应方法)
IJCAI 2022|边界引导的伪装目标检测模型BGNet
Comparison and summary of Tensorflow2 and Pytorch in terms of basic operations of tensor Tensor
[Go through 4] 09-10_Classic network analysis
面向小白的深度学习代码库,一行代码实现30+中attention机制。
读论文 - Unpaired Portrait Drawing Generation via Asymmetric Cycle Mapping
随机推荐
The difference between the operators and logical operators
flink实例开发-batch批处理实例
CVPR2020 - 自校准卷积
Flink EventTime和Watermarks案例分析
SparkML-初探-文本分类
It turns out that the MAE proposed by He Yuming is still a kind of data enhancement
怎么更改el-table-column的边框线
Tensorflow steps on the pit notes and records various errors and solutions
基于STM32F407的WIFI通信(使用的是ESP8266模块)
解决:Unknown column ‘id‘ in ‘where clause‘ 问题
AIDL详解
2022年中总结关键词:裁员、年终奖、晋升、涨薪、疫情
表情捕捉的指标/图像的无参考质量评价
[Database and SQL study notes] 10. (T-SQL language) functions, stored procedures, triggers
[Go through 10] sklearn usage record
el-table鼠标移入表格改变显示背景色
ECCV2022 | RU&谷歌提出用CLIP进行zero-shot目标检测!
单片机按键开发库-支持连击、长按等操作
Lecture 3 Gradient Tutorial Gradient Descent and Stochastic Gradient Descent
CVPR 2022 |节省70%的显存,训练速度提高2倍