当前位置:网站首页>Introduction to deep learning in machine learning
Introduction to deep learning in machine learning
2022-06-28 15:40:00 【Hua Weiyun】
Deep learning
1. Deep learning Introduction
Deep learning (Deep learning) It is a branch of machine learning , It comes from labor
The study of neural networks .
Deep learning is widely used in computer vision , Audio processing , Naturallanguageprocessing, etc
Domain .
Artificial neural network (Artificial Neural Network), A mathematical model is used to simulate nerve
Meta activity , It is an information processing system based on imitating the structure and function of brain neural network
system .
Biological neural cell structure

Perceptron model

2. The principle of deep learning
Forward propagation (Forward Propagation), It is calculated from the input through a layer of hidden layers
Process to output , That is, weighted summation , Then through an activation function .
Back propagation (Backward Propagation) Is consistent with the calculation direction of forward propagation
back , It is the error between the calculated output value and the real value , Calculate each by network reverse flow
Gradient of a layer of parameters ( Partial derivative ), To update training parameters .
1) Commonly used activation functions
1、Sigmoid function 
derivative 
2、tanh function 
derivative

3、Relu function 
derivative 
4、Leaky Relu function
derivative 
2) Loss functions are commonly used
1、 Mean square loss function 
2、 Cross entropy loss function 
(3) Common optimization functions
1、SGD: Random gradient descent optimizer

2、Momentum: Random gradient descent with momentum

3、Nesterov Accelerated Gradient: Newton's acceleration gradient drops

4、Adagrad(Adaptive gradient): Adaptive gradient descent
5、Adadelta

6、RMSprop

6、Adam:Adaptive Moment Estimation



3. Deep learning enables
Deep learning network realizes regression
Deep learning network realizes classification
边栏推荐
- 隐私计算 FATE - 离线预测
- Leike defense: 4D millimeter wave radar products are expected to be mass produced and supplied by the end of the year
- Successful cases of rights protection of open source projects: successful rights protection of SPuG open source operation and maintenance platform
- R语言ggplot2可视化:使用patchwork包(直接使用加号+)将一个ggplot2可视化结果和数据表格横向组合起来形成最终结果图
- Openharmony - detailed source code of Kernel Object Events
- R语言ggplot2可视化:使用patchwork包(直接使用加号+)将一个ggplot2可视化结果和一段文本内容横向组合起来形成最终结果图
- 厨卫电器行业S2B2C系统网站解决方案:打造S2B2C平台全渠道商业系统
- 化学制品制造业智慧供应商管理系统深度挖掘供应商管理领域,提升供应链协同
- Solution to JSON parsing problem using curl for Tron API signature broadcast and json Problem record of the loads method
- Flutter dart语言特点总结
猜你喜欢
Oracle11g数据库使用expdp每周进行数据备份并上传到备份服务器
![[leetcode] 13. Roman numeral to integer](/img/3c/7c57d0c407f5302115f69f44b473c5.png)
[leetcode] 13. Roman numeral to integer

环保产品“绿色溢价”高?低碳生活方式离人们还有多远

Privacy computing fat - offline prediction

SAP MTS/ATO/MTO/ETO专题之九:M+M模式前后台操作,策略用50,提前准备原材料和半成品

Visual Studio 2010 配置和使用Qt5.6.3

GCC efficient graph revolution for joint node representationlearning and clustering

Practice of curve replacing CEPH in Netease cloud music

SaaS application management platform solution in the education industry: help enterprises realize the integration of operation and management

C#/VB. Net to convert PDF to excel
随机推荐
R语言ggplot2可视化:使用patchwork包将3个ggplot2可视化结果自定义组合起来构成组合图、两个子图横向组合后和另外一个图纵向组合构成最终组合图
Yiwen teaches you to quickly generate MySQL database diagram
ROS knowledge points - build an ROS development environment using vscode
环保产品“绿色溢价”高?低碳生活方式离人们还有多远
Flutter simply implements multilingual internationalization
openGauss内核:SQL解析过程分析
分布式理论须知
Express template engine
ROS知识点——使用VScode搭建ROS开发环境
Not being a meta universe now is like not buying a house 20 years ago!
What! 一条命令搞定监控?
How to build a 100000 level QPS large flow and high concurrency coupon system from zero
Installation and use of Jenkins
QT create 5.0.3 configuring qt4.8.7
web Worker 轮询请求
The k-th element in the array [heap row + actual time complexity of heap building]
C语言学习-19-全排列
一文教你快速生成MySQL数据库关系图
一种跳板机的实现思路
机器学习之深度学习简介