当前位置:网站首页>违法行为分析1
违法行为分析1
2022-07-07 21:51:00 【小胖超凶哦!】
spark-sql> select tt1.tjrq
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,tt1.qntq_sgs
>
> ,tt1.dr_swsgs
> ,tt1.jn_swsgs
> ,tt1.qntq_swsgs
>
> ,tt1.dr_swrs
> ,tt1.jn_swrs
> ,tt1.qntq_swrs
>
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
>
> ,NVL(round((abs(tt1.dr_swsgs-tt1.qntq_swsgs)/NVL(tt1.qntq_swsgs,1))*100,2),0) as tb_swsgs
> ,if(tt1.dr_swsgs-tt1.qntq_swsgs>0,"上升",'下降') as tb_swsgs_bj
>
> ,NVL(round((abs(tt1.dr_swrs-tt1.qntq_swrs)/NVL(tt1.qntq_swrs,1))*100,2),0) as tb_swrs
> ,if(tt1.dr_swrs-tt1.qntq_swrs>0,"上升",'下降') as tb_swrs_bj
> from(
> select t1.tjrq
> ,t1.dr_sgs
> ,t1.dr_swsgs
> ,t1.dr_swrs
>
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
>
> ,sum(t1.dr_swsgs)over (partition by substr(t1.tjrq,1,4))as jn_swsgs
> ,lag(t1.dr_swsgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swsgs
>
> ,sum(t1.dr_swrs)over (partition by substr(t1.tjrq,1,4))as jn_swrs
> ,lag(t1.dr_swrs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swrs
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs --当日事故数
> ,sum(if(swrs7>0,1,0))as dr_swsgs --当日发生死亡事故数
> ,sum(swrs7)as dr_swrs --当日死亡人数
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1
> order by tt1.tjrq;
Time taken: 6.484 seconds, Fetched 4966 row(s)
22/07/05 15:46:19 INFO thriftserver.SparkSQLCLIDriver: Time taken: 6.484 seconds, Fetched 4966 row(s)spark-sql> select tt1.tjrq
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,tt1.qntq_sgs
>
> ,tt1.dr_swsgs
> ,tt1.jn_swsgs
> ,tt1.qntq_swsgs
>
> ,tt1.dr_swrs
> ,tt1.jn_swrs
> ,tt1.qntq_swrs
>
> ,tt1.dr_ssrs
> ,tt1.jn_ssrs
> ,tt1.qntq_ssrs
>
> ,tt1.dr_zjccss
> ,tt1.jn_zjccss
> ,tt1.qntq_zjccss
>
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
>
> ,NVL(round((abs(tt1.dr_swsgs-tt1.qntq_swsgs)/NVL(tt1.qntq_swsgs,1))*100,2),0) as tb_swsgs
> ,if(tt1.dr_swsgs-tt1.qntq_swsgs>0,"上升",'下降') as tb_swsgs_bj
>
> ,NVL(round((abs(tt1.dr_swrs-tt1.qntq_swrs)/NVL(tt1.qntq_swrs,1))*100,2),0) as tb_swrs
> ,if(tt1.dr_swrs-tt1.qntq_swrs>0,"上升",'下降') as tb_swrs_bj
>
> ,NVL(round((abs(tt1.dr_ssrs-tt1.qntq_ssrs)/NVL(tt1.qntq_ssrs,1))*100,2),0) as tb_ssrs
> ,if(tt1.dr_ssrs-tt1.qntq_ssrs>0,"上升",'下降') as tb_ssrs_bj
>
> ,NVL(round((abs(tt1.dr_zjccss-tt1.qntq_zjccss)/NVL(tt1.qntq_zjccss,1))*100,2),0) as tb_zjccss
> ,if(tt1.dr_zjccss-tt1.qntq_zjccss>0,"上升",'下降') as tb_zjccss_bj
> from(
> select t1.tjrq
> ,t1.dr_sgs
> ,t1.dr_swsgs
> ,t1.dr_swrs
> ,t1.dr_ssrs
> ,t1.dr_zjccss
>
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
>
> ,sum(t1.dr_swsgs)over (partition by substr(t1.tjrq,1,4))as jn_swsgs
> ,lag(t1.dr_swsgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swsgs
>
> ,sum(t1.dr_swrs)over (partition by substr(t1.tjrq,1,4))as jn_swrs
> ,lag(t1.dr_swrs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swrs
>
> ,sum(t1.dr_ssrs)over (partition by substr(t1.tjrq,1,4))as jn_ssrs
> ,lag(t1.dr_ssrs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_ssrs
>
> ,sum(t1.dr_zjccss)over (partition by substr(t1.tjrq,1,4))as jn_zjccss
> ,lag(t1.dr_zjccss,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_zjccss
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs --当日事故数
> ,sum(if(swrs7>0,1,0))as dr_swsgs --当日发生死亡事故数
> ,sum(swrs7)as dr_swrs --当日死亡人数
> ,sum(ssrs7)as dr_ssrs --当日受伤人数
> ,sum(zjccss)as dr_zjccss --当日直接财产损失
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1
> order by tt1.tjrq;
Time taken: 11.104 seconds, Fetched 4966 row(s)
22/07/05 15:56:13 INFO thriftserver.SparkSQLCLIDriver: Time taken: 11.104 seconds, Fetched 4966 row(s)spark-sql> select tt1.tjrq
>
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,tt1.qntq_sgs
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
>
> ,tt1.dr_swsgs
> ,tt1.jn_swsgs
> ,tt1.qntq_swsgs
> ,NVL(round((abs(tt1.dr_swsgs-tt1.qntq_swsgs)/NVL(tt1.qntq_swsgs,1))*100,2),0) as tb_swsgs
> ,if(tt1.dr_swsgs-tt1.qntq_swsgs>0,"上升",'下降') as tb_swsgs_bj
>
> ,tt1.dr_swrs
> ,tt1.jn_swrs
> ,tt1.qntq_swrs
> ,NVL(round((abs(tt1.dr_swrs-tt1.qntq_swrs)/NVL(tt1.qntq_swrs,1))*100,2),0) as tb_swrs
> ,if(tt1.dr_swrs-tt1.qntq_swrs>0,"上升",'下降') as tb_swrs_bj
>
> ,tt1.dr_ssrs
> ,tt1.jn_ssrs
> ,tt1.qntq_ssrs
> ,NVL(round((abs(tt1.dr_ssrs-tt1.qntq_ssrs)/NVL(tt1.qntq_ssrs,1))*100,2),0) as tb_ssrs
> ,if(tt1.dr_ssrs-tt1.qntq_ssrs>0,"上升",'下降') as tb_ssrs_bj
>
> ,tt1.dr_zjccss
> ,tt1.jn_zjccss
> ,tt1.qntq_zjccss
> ,NVL(round((abs(tt1.dr_zjccss-tt1.qntq_zjccss)/NVL(tt1.qntq_zjccss,1))*100,2),0) as tb_zjccss
> ,if(tt1.dr_zjccss-tt1.qntq_zjccss>0,"上升",'下降') as tb_zjccss_bj
> from(
> select t1.tjrq
>
> ,t1.dr_sgs
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
>
> ,t1.dr_swsgs
> ,sum(t1.dr_swsgs)over (partition by substr(t1.tjrq,1,4))as jn_swsgs
> ,lag(t1.dr_swsgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swsgs
>
> ,t1.dr_swrs
> ,sum(t1.dr_swrs)over (partition by substr(t1.tjrq,1,4))as jn_swrs
> ,lag(t1.dr_swrs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swrs
>
> ,t1.dr_ssrs
> ,sum(t1.dr_ssrs)over (partition by substr(t1.tjrq,1,4))as jn_ssrs
> ,lag(t1.dr_ssrs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_ssrs
>
> ,t1.dr_zjccss
> ,sum(t1.dr_zjccss)over (partition by substr(t1.tjrq,1,4))as jn_zjccss
> ,lag(t1.dr_zjccss,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_zjccss
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs --当日事故数
> ,sum(if(swrs7>0,1,0))as dr_swsgs --当日发生死亡事故数
> ,sum(swrs7)as dr_swrs --当日死亡人数
> ,sum(ssrs7)as dr_ssrs --当日受伤人数
> ,sum(zjccss)as dr_zjccss --当日直接财产损失
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1
> order by tt1.tjrq;
Time taken: 9.019 seconds, Fetched 4966 row(s)
22/07/05 16:06:51 INFO thriftserver.SparkSQLCLIDriver: Time taken: 9.019 seconds, Fetched 4966 row(s)spark-sql> create database dws;
Time taken: 0.829 seconds
22/07/05 16:08:44 INFO thriftserver.SparkSQLCLIDriver: Time taken: 0.829 seconds
spark-sql> use dws;
Time taken: 0.032 seconds
22/07/05 16:08:50 INFO thriftserver.SparkSQLCLIDriver: Time taken: 0.032 seconds
spark-sql> CREATE TABLE dws.app_acd_mrjq(
> tjrq STRING COMMENT '统计日期',
>
> dr_sgs int COMMENT '当日事故数',
> jn_sgs int COMMENT '今年事故数',
> tb_sgs double COMMENT '同比事故数',
> tb_sgs_bj STRING COMMENT '同比事故数标记',
>
> dr_swsgs int COMMENT '当日死亡事故数',
> jn_swsgs int COMMENT '今年死亡事故数',
> tb_swsgs double COMMENT '同比死亡事故数',
> tb_swsgs_bj STRING COMMENT '同比死亡事故数标记',
>
> dr_swrs int COMMENT '当日死亡人数',
> jn_swrs int COMMENT '今年死亡人数',
> tb_swrs double COMMENT '同比死亡人数',
> tb_swrs_bj STRING COMMENT '同比死亡人数标记',
>
> dr_ssrs int COMMENT '当日受伤人数',
> jn_ssrs int COMMENT '今年受伤人数',
> tb_ssrs double COMMENT '同比受伤人数',
> tb_ssrs_bj STRING COMMENT '同比受伤人数标记',
>
> dr_zjccss int COMMENT '当日财产损失',
> jn_zjccss int COMMENT '今年财产损失',
> tb_zjccss double COMMENT '同比财产损失',
> tb_zjccss_bj STRING COMMENT '同比财产损失标记'
> )
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY '^'
> STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
> OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
> location '/car/dws/app_acd_mrjq';
Time taken: 0.186 seconds
22/07/05 16:11:50 INFO thriftserver.SparkSQLCLIDriver: Time taken: 0.186 secondsspark-sql> INSERT overwrite table dws.app_acd_mrjq
> select tt1.tjrq
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
> ,tt1.dr_swsgs
> ,tt1.jn_swsgs
> ,NVL(round((abs(tt1.dr_swsgs-tt1.qntq_swsgs)/NVL(tt1.qntq_swsgs,1))*100,2),0) as tb_swsgs
> ,if(tt1.dr_swsgs-tt1.qntq_swsgs>0,"上升",'下降') as tb_swsgs_bj
> ,tt1.dr_swrs
> ,tt1.jn_swrs
> ,NVL(round((abs(tt1.dr_swrs-tt1.qntq_swrs)/NVL(tt1.qntq_swrs,1))*100,2),0) as tb_swrs
> ,if(tt1.dr_swrs-tt1.qntq_swrs>0,"上升",'下降') as tb_swrs_bj
> ,tt1.dr_ssrs
> ,tt1.jn_ssrs
> ,NVL(round((abs(tt1.dr_ssrs-tt1.qntq_ssrs)/NVL(tt1.qntq_ssrs,1))*100,2),0) as tb_ssrs
> ,if(tt1.dr_ssrs-tt1.qntq_ssrs>0,"上升",'下降') as tb_ssrs_bj
> ,tt1.dr_zjccss
> ,tt1.jn_zjccss
> ,NVL(round((abs(tt1.dr_zjccss-tt1.qntq_zjccss)/NVL(tt1.qntq_zjccss,1))*100,2),0) as tb_zjccss
> ,if(tt1.dr_zjccss-tt1.qntq_zjccss>0,"上升",'下降') as tb_zjccss_bj
> from(
> select t1.tjrq
> ,t1.dr_sgs
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
> ,t1.dr_swsgs
> ,sum(t1.dr_swsgs)over (partition by substr(t1.tjrq,1,4))as jn_swsgs
> ,lag(t1.dr_swsgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swsgs
> ,t1.dr_swrs
> ,sum(t1.dr_swrs)over (partition by substr(t1.tjrq,1,4))as jn_swrs
> ,lag(t1.dr_swrs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swrs
> ,t1.dr_ssrs
> ,sum(t1.dr_ssrs)over (partition by substr(t1.tjrq,1,4))as jn_ssrs
> ,lag(t1.dr_ssrs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_ssrs
> ,t1.dr_zjccss
> ,sum(t1.dr_zjccss)over (partition by substr(t1.tjrq,1,4))as jn_zjccss
> ,lag(t1.dr_zjccss,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_zjccss
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs --当日事故数
> ,sum(if(swrs7>0,1,0))as dr_swsgs --当日发生死亡事故数
> ,sum(swrs7)as dr_swrs --当日死亡人数
> ,sum(ssrs7)as dr_ssrs --当日受伤人数
> ,sum(zjccss)as dr_zjccss --当日直接财产损失
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1;
spark-sql> select * from dws.app_acd_mrjq;
Time taken: 0.271 seconds, Fetched 4966 row(s)
22/07/05 16:23:40 INFO thriftserver.SparkSQLCLIDriver: Time taken: 0.271 seconds, Fetched 4966 row(s)spark-sql> select substr(fxjg,1,4) as fxjg,wfxw1 as wfxw,jtfs,dllx,xxly,wfdd,wfsj,cjbj,jllx from dwd.base_vio_force union all
> select substr(fxjg,1,4) as fxjg,wfxw2 as wfxw,jtfs,dllx,xxly,wfdd,wfsj,cjbj,jllx from dwd.base_vio_force union all
> select substr(fxjg,1,4) as fxjg,wfxw3 as wfxw,jtfs,dllx,xxly,wfdd,wfsj,cjbj,jllx from dwd.base_vio_force union all
> select substr(fxjg,1,4) as fxjg,wfxw4 as wfxw,jtfs,dllx,xxly,wfdd,wfsj,cjbj,jllx from dwd.base_vio_force union all
> select substr(fxjg,1,4) as fxjg,wfxw5 as wfxw,jtfs,dllx,xxly,wfdd,wfsj,cjbj,jllx from dwd.base_vio_force union all
> select substr(fxjg,1,4) as fxjg,wfxw,jtfs,dllx,xxly,wfdd,wfsj,'1' cjbj,jllx from dwd.base_vio_violation
> ;
Time taken: 4.433 seconds, Fetched 262227 row(s)
22/07/06 16:16:11 INFO thriftserver.SparkSQLCLIDriver: Time taken: 4.433 seconds, Fetched 262227 row(s)
spark-sql> select substr(fxjg,1,4)as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,cjbj
> ,jllx
> from dwd.base_vio_force
> lateral view explode(array(wfxw1,wfxw2,wfxw3,wfxw4,wfxw5))v as wfxw
> union
> select substr(fxjg,1,4) as fxjg,wfxw,jtfs,dllx,xxly,wfdd,wfsj,'1' cjbj,jllx from dwd.base_vio_violation
> ;
Time taken: 3.768 seconds, Fetched 129456 row(s)
22/07/06 16:24:40 INFO thriftserver.SparkSQLCLIDriver: Time taken: 3.768 seconds, Fetched 129456 row(s)
spark-sql> select *
> from(
> select substr(fxjg,1,4)as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,cjbj
> ,jllx
> from dwd.base_vio_force
> lateral view explode(array(wfxw1,wfxw2,wfxw3,wfxw4,wfxw5))v as wfxw
> union
> select substr(fxjg,1,4) as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,'1' cjbj
> ,jllx from dwd.base_vio_violation
> )t1 where t1.fxjg='5306' and t1.wfxw='1083B';
Time taken: 1.654 seconds, Fetched 443 row(s)
22/07/06 16:30:16 INFO thriftserver.SparkSQLCLIDriver: Time taken: 1.654 seconds, Fetched 443 row(s)
spark-sql> select *
> from(
> select substr(fxjg,1,4)as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,cjbj
> ,jllx
> from dwd.base_vio_force
> lateral view explode(array(wfxw1,wfxw2,wfxw3,wfxw4,wfxw5))v as wfxw
> union
> select substr(fxjg,1,4) as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,'1' cjbj
> ,jllx
> from dwd.base_vio_violation
> )t1 where t1.fxjg='5306' and t1.wfxw='1083B'
> order by t1.wfsj
> ;
Time taken: 2.812 seconds, Fetched 443 row(s)
22/07/06 16:33:18 INFO thriftserver.SparkSQLCLIDriver: Time taken: 2.812 seconds, Fetched 443 row(s)spark-sql> select date_format('2020-10-16 01:36:24','yyyy-MM-dd');
spark-sql> select date_format('2020-10-16 01:36:24','yyyy/MM/dd');spark-sql> select ttt1.tjrq
> ,ttt1.dr_wfs
> ,ttt1.jn_wfs
> ,ttt1.qntq_wfs
> ,NVL(round((abs(ttt1.dr_wfs-ttt1.qntq_wfs)/NVL(ttt1.qntq_wfs,1))*100,2),0) as tb
> from(
> select tt1.tjrq
> ,tt1.dr_wfs
> ,sum(tt1.dr_wfs)over (partition by year(tt1.tjrq))as jn_wfs
> ,lag(tt1.dr_wfs,1,1)over (partition by date_format(tt1.tjrq,'MM-dd')order by year(tt1.tjrq))as qntq_wfs
> from(
> select date_format(t1.wfsj,'yyyy-MM-dd')as tjrq
> ,count(1)as dr_wfs --当日违法数
> from(
> select substr(fxjg,1,4)as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,cjbj
> ,jllx
> from dwd.base_vio_force
> lateral view explode(array(wfxw1,wfxw2,wfxw3,wfxw4,wfxw5))v as wfxw
> union
> select substr(fxjg,1,4) as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,'1' cjbj
> ,jllx
> from dwd.base_vio_violation
> )t1 where t1.wfxw is not null
> group by date_format(t1.wfsj,'yyyy-MM-dd')
> )tt1
> )ttt1
>
> ;
Time taken: 8.772 seconds, Fetched 1021 row(s)
22/07/06 16:57:47 INFO thriftserver.SparkSQLCLIDriver: Time taken: 8.772 seconds, Fetched 1021 row(s)
spark-sql> select ttt1.tjrq
> ,ttt1.dr_wfs
> ,ttt1.jn_wfs
> ,ttt1.qntq_wfs
> ,NVL(round((abs(ttt1.dr_wfs-ttt1.qntq_wfs)/NVL(ttt1.qntq_wfs,1))*100,2),0) as tb
> ,if(ttt1.dr_wfs>ttt1.qntq_wfs,'上升','下降') as tbbj
> from(
> select tt1.tjrq
> ,tt1.dr_wfs
> ,sum(tt1.dr_wfs)over (partition by year(tt1.tjrq))as jn_wfs
> ,lag(tt1.dr_wfs,1,1)over (partition by date_format(tt1.tjrq,'MM-dd')order by year(tt1.tjrq))as qntq_wfs
> from(
> select date_format(t1.wfsj,'yyyy-MM-dd')as tjrq
> ,count(1)as dr_wfs --当日违法数
> from(
> select substr(fxjg,1,4)as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,cjbj
> ,jllx
> from dwd.base_vio_force
> lateral view explode(array(wfxw1,wfxw2,wfxw3,wfxw4,wfxw5))v as wfxw
> union
> select substr(fxjg,1,4) as fxjg
> ,wfxw
> ,jtfs
> ,dllx
> ,xxly
> ,wfdd
> ,wfsj
> ,'1' cjbj
> ,jllx
> from dwd.base_vio_violation
> )t1 where t1.wfxw is not null
> group by date_format(t1.wfsj,'yyyy-MM-dd')
> )tt1
> )ttt1
> ;
Time taken: 5.995 seconds, Fetched 1021 row(s)
22/07/06 17:01:35 INFO thriftserver.SparkSQLCLIDriver: Time taken: 5.995 seconds, Fetched 1021 row(s)边栏推荐
猜你喜欢

Adults have only one main job, but they have to pay a price. I was persuaded to step back by personnel, and I cried all night

成年人只有一份主业是要付出代价的,被人事劝退后,我哭了一整晚

Inftnews | the wide application of NFT technology and its existing problems

Anta DTC | Anta transformation, building a growth flywheel that is not only FILA

Technology at home and abroad people "see" the future of audio and video technology

微信论坛交流小程序系统毕业设计毕设(4)开题报告

UE4_UE5结合罗技手柄(F710)使用记录

13、 System optimization

Cases of agile innovation and transformation of consumer goods enterprises

Wechat forum exchange applet system graduation design (5) assignment
随机推荐
OC variable parameter transfer
微信论坛交流小程序系统毕业设计毕设(3)后台功能
leetcode-520. 检测大写字母-js
微信论坛交流小程序系统毕业设计毕设(6)开题答辩PPT
Wechat forum exchange applet system graduation design completion (7) Interim inspection report
Introduction to anomaly detection
U盘拷贝东西时,报错卷错误,请运行chkdsk
CAIP2021 初赛VP
What are the similarities and differences between smart communities and smart cities
聊聊支付流程的设计与实现逻辑
Wechat forum exchange applet system graduation design (2) applet function
Network security - phishing
Introduction to redis and jedis and redis things
定位到最底部[通俗易懂]
Adrnoid Development Series (XXV): create various types of dialog boxes using alertdialog
经纬度PLT文件格式说明
Wechat forum exchange applet system graduation design completion (4) opening report
在软件工程领域,搞科研的这十年!
JS triangle
Anta DTC | Anta transformation, building a growth flywheel that is not only FILA