当前位置:网站首页>高数中值定理总结
高数中值定理总结
2022-07-06 22:42:00 【全栈O-Jay】
中值定理
一般用于证明题,分析步骤:确定区间、确定辅助函数、确定使用的定理、关键点分析。
f(x)在[a,b]上连续,
- 有界与最值定理: m ≤ f ( x ) ≤ M m \leq f(x)\leq M m≤f(x)≤M
- 介值定理: m ≤ μ ≤ M , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = μ m\leq \mu \leq M, \exists \epsilon \in[a,b], f(\epsilon) = \mu m≤μ≤M,∃ϵ∈[a,b],f(ϵ)=μ
- 平均值定理: a < x 1 < x 2 < ⋯ < x n < b , ∃ ϵ ∈ [ x 1 , x n ] , f ( ϵ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n a<x_1<x_2<\cdots<x_n<b, \exists \epsilon \in[x_1,x_n], f(\epsilon) = \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} a<x1<x2<⋯<xn<b,∃ϵ∈[x1,xn],f(ϵ)=nf(x1)+f(x2)+⋯+f(xn)
- 零点定理: f ( a ) ⋅ f ( b ) < 0 , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = 0 f(a)\cdot f(b)<0, \exists \epsilon \in[a,b], f(\epsilon) = 0 f(a)⋅f(b)<0,∃ϵ∈[a,b],f(ϵ)=0
- 费马定理: x 0 处 可 导 且 为 极 值 , f ′ ( x 0 ) = 0 x_0处可导且为极值, f'(x_0) = 0 x0处可导且为极值,f′(x0)=0
- 罗尔定理: [ a , b ) 可 导 , f ( a ) = f ( b ) , ∃ ϵ ∈ [ a , b ] , f ′ ( ϵ ) = 0 [a,b)可导, f(a) = f(b), \exists \epsilon \in[a,b], f'(\epsilon) = 0 [a,b)可导,f(a)=f(b),∃ϵ∈[a,b],f′(ϵ)=0
- 拉格朗日中值定理: ( a , b ) 可 导 , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) = f ′ ( ϵ ) ( b − a ) (a,b)可导, \exists \epsilon \in[a,b], f(b) - f(a) = f'(\epsilon)(b-a) (a,b)可导,∃ϵ∈[a,b],f(b)−f(a)=f′(ϵ)(b−a)
- 柯西中值定理: ( a , b ) 可 导 , g ′ ( x ) ≠ 0 , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ϵ ) g ′ ( ϵ ) (a,b)可导, g'(x)\neq 0, \exists \epsilon \in[a,b], \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\epsilon)}{g'(\epsilon)} (a,b)可导,g′(x)=0,∃ϵ∈[a,b],g(b)−g(a)f(b)−f(a)=g′(ϵ)f′(ϵ)
- 泰勒公式(拉格朗日余项): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ϵ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +\frac{f^{(n+1)}(\epsilon)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+(n+1)!f(n+1)(ϵ)(x−x0)n+1
- 泰勒公式(佩亚诺余项): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + O ( ( x − x 0 ) n ) f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +O((x-x_0)^n) f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+O((x−x0)n)
- 积分中值定理: ∃ ϵ ∈ [ a , b ] , ∫ a b f ( x ) d x b − a = f ( ϵ ) \exists \epsilon \in[a,b], \frac{\int_a^bf(x)dx}{b-a} = f(\epsilon) ∃ϵ∈[a,b],b−a∫abf(x)dx=f(ϵ)
有个记忆技巧,最常用的就七个,“零介费罗拉泰西”,看到证明题没思路可以一一试试,
边栏推荐
- 【736. Lisp 语法解析】
- Test interview | how much can you answer the real test interview question of an Internet company?
- How to design API interface and realize unified format return?
- Ansible概述和模块解释(你刚走过了今天,而扑面而来的却是昨天)
- Jetson nano configures pytorch deep learning environment / / to be improved
- Run the command once per second in Bash- Run command every second in Bash?
- Acl2022 | decomposed meta learning small sample named entity recognition
- Camera calibration (I): robot hand eye calibration
- Factor analysis r practice (with R installation tutorial and code)
- 当 Knative 遇见 WebAssembly
猜你喜欢
In depth analysis of kubebuilder
Section 1: (3) logic chip process substrate selection
AttributeError: module ‘torch._ C‘ has no attribute ‘_ cuda_ setDevice‘
Flask项目使用flask-socketio异常:TypeError: function() argument 1 must be code, not str
Inventory host list in ansible (I wish you countless flowers and romance)
Windows are not cheap things
DFS and BFS concepts and practices +acwing 842 arranged numbers (DFS) +acwing 844 Maze walking (BFS)
JS variable plus
DFS和BFS概念及实践+acwing 842 排列数字(dfs) +acwing 844. 走迷宫(bfs)
Ansible中的inventory主機清單(預祝你我有數不盡的鮮花和浪漫)
随机推荐
Tree map: tree view - draw covid-19 array diagram
一文搞懂常见的网络I/O模型
Field data acquisition and edge calculation scheme of CNC machine tools
Introduction to the PureMVC series
指针与数组在函数中输入实现逆序输出
Ansible中的inventory主機清單(預祝你我有數不盡的鮮花和浪漫)
JS also exports Excel
关于01背包个人的一些理解
架构实战训练营|课后作业|模块 6
Detect when a tab bar item is pressed
C语言中函数指针与指针函数
Meow, come, come: do you really know if, if else
Wechat can play the trumpet. Pinduoduo was found guilty of infringement. The shipment of byte VR equipment ranks second in the world. Today, more big news is here
How to package the parsed Excel data into objects and write this object set into the database?
Meaning of 'n:m' and '1:n' in database design
Time complexity & space complexity
史上最全学习率调整策略lr_scheduler
Vscode automatically adds a semicolon and jumps to the next line
JS variable case
DFS and BFS concepts and practices +acwing 842 arranged numbers (DFS) +acwing 844 Maze walking (BFS)