当前位置:网站首页>高数中值定理总结
高数中值定理总结
2022-07-06 22:42:00 【全栈O-Jay】
中值定理
一般用于证明题,分析步骤:确定区间、确定辅助函数、确定使用的定理、关键点分析。
f(x)在[a,b]上连续,
- 有界与最值定理: m ≤ f ( x ) ≤ M m \leq f(x)\leq M m≤f(x)≤M
- 介值定理: m ≤ μ ≤ M , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = μ m\leq \mu \leq M, \exists \epsilon \in[a,b], f(\epsilon) = \mu m≤μ≤M,∃ϵ∈[a,b],f(ϵ)=μ
- 平均值定理: a < x 1 < x 2 < ⋯ < x n < b , ∃ ϵ ∈ [ x 1 , x n ] , f ( ϵ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n a<x_1<x_2<\cdots<x_n<b, \exists \epsilon \in[x_1,x_n], f(\epsilon) = \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} a<x1<x2<⋯<xn<b,∃ϵ∈[x1,xn],f(ϵ)=nf(x1)+f(x2)+⋯+f(xn)
- 零点定理: f ( a ) ⋅ f ( b ) < 0 , ∃ ϵ ∈ [ a , b ] , f ( ϵ ) = 0 f(a)\cdot f(b)<0, \exists \epsilon \in[a,b], f(\epsilon) = 0 f(a)⋅f(b)<0,∃ϵ∈[a,b],f(ϵ)=0
- 费马定理: x 0 处 可 导 且 为 极 值 , f ′ ( x 0 ) = 0 x_0处可导且为极值, f'(x_0) = 0 x0处可导且为极值,f′(x0)=0
- 罗尔定理: [ a , b ) 可 导 , f ( a ) = f ( b ) , ∃ ϵ ∈ [ a , b ] , f ′ ( ϵ ) = 0 [a,b)可导, f(a) = f(b), \exists \epsilon \in[a,b], f'(\epsilon) = 0 [a,b)可导,f(a)=f(b),∃ϵ∈[a,b],f′(ϵ)=0
- 拉格朗日中值定理: ( a , b ) 可 导 , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) = f ′ ( ϵ ) ( b − a ) (a,b)可导, \exists \epsilon \in[a,b], f(b) - f(a) = f'(\epsilon)(b-a) (a,b)可导,∃ϵ∈[a,b],f(b)−f(a)=f′(ϵ)(b−a)
- 柯西中值定理: ( a , b ) 可 导 , g ′ ( x ) ≠ 0 , ∃ ϵ ∈ [ a , b ] , f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ϵ ) g ′ ( ϵ ) (a,b)可导, g'(x)\neq 0, \exists \epsilon \in[a,b], \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\epsilon)}{g'(\epsilon)} (a,b)可导,g′(x)=0,∃ϵ∈[a,b],g(b)−g(a)f(b)−f(a)=g′(ϵ)f′(ϵ)
- 泰勒公式(拉格朗日余项): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ϵ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +\frac{f^{(n+1)}(\epsilon)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+(n+1)!f(n+1)(ϵ)(x−x0)n+1
- 泰勒公式(佩亚诺余项): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + O ( ( x − x 0 ) n ) f(x) = f(x_0) + f'(x_0)(x-x_0)+\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n +O((x-x_0)^n) f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+O((x−x0)n)
- 积分中值定理: ∃ ϵ ∈ [ a , b ] , ∫ a b f ( x ) d x b − a = f ( ϵ ) \exists \epsilon \in[a,b], \frac{\int_a^bf(x)dx}{b-a} = f(\epsilon) ∃ϵ∈[a,b],b−a∫abf(x)dx=f(ϵ)
有个记忆技巧,最常用的就七个,“零介费罗拉泰西”,看到证明题没思路可以一一试试,
边栏推荐
- Servicemesh mainly solves three pain points
- PLC模拟量输出 模拟量输出FB analog2NDA(三菱FX3U)
- Read of shell internal value command
- 九章云极DataCanvas公司获评36氪「最受投资人关注的硬核科技企业」
- Station B boss used my world to create convolutional neural network, Lecun forwarding! Burst the liver for 6 months, playing more than one million
- A simple and beautiful regression table is produced in one line of code~
- R descriptive statistics and hypothesis testing
- File upload vulnerability summary
- 全国气象数据/降雨量分布数据/太阳辐射数据/NPP净初级生产力数据/植被覆盖度数据
- 组织实战攻防演练的5个阶段
猜你喜欢

IMS data channel concept of 5g vonr+

System framework of PureMVC

Depth first traversal template principle of tree and graph

In depth analysis of kubebuilder

Markdown editor

R language principal component PCA, factor analysis, clustering analysis of regional economy analysis of Chongqing Economic Indicators

01机器学习相关规定

九章云极DataCanvas公司蝉联中国机器学习平台市场TOP 3

JDBC link Oracle reference code

How to choose an offer and what factors should be considered
随机推荐
【愚公系列】2022年7月 Go教学课程 005-变量
STM32F103实现IAP在线升级应用程序
C语言中函数指针与指针函数
File upload vulnerability summary
Structure actual training camp | after class homework | module 6
【ArcGIS教程】专题图制作-人口密度分布图——人口密度分析
九章云极DataCanvas公司蝉联中国机器学习平台市场TOP 3
JS input and output
Read of shell internal value command
【Android Kotlin协程】利用CoroutineContext实现网络请求失败后重试逻辑
How to package the parsed Excel data into objects and write this object set into the database?
谈谈讲清楚这件事的重要性
装饰器基础学习02
DFS and BFS concepts and practices +acwing 842 arranged numbers (DFS) +acwing 844 Maze walking (BFS)
Mysql database (basic)
Vscode automatically adds a semicolon and jumps to the next line
STM32 encapsulates the one key configuration function of esp8266: realize the switching between AP mode and sta mode, and the creation of server and client
Ansible overview and module explanation (you just passed today, but yesterday came to your face)
Thread和Runnable创建线程的方式对比
01 machine learning related regulations