当前位置:网站首页>Combinatorics Notes (6) Associative Algebra of Locally Finite Partially Ordered Sets, Möbius Inversion Formula
Combinatorics Notes (6) Associative Algebra of Locally Finite Partially Ordered Sets, Möbius Inversion Formula
2022-07-31 16:45:00 【zorchp】
tags: Combinatorics
写在前面
There are a lot of partially ordered sets and lattices in the front,Basic knowledge of distributive lattice, etc, Let's start with these algebraic structures as research objects, Explore some of its properties and relationships, Let's start with the definition of associative algebra.
Introduction to associative algebra
定义
- 令 I n t ( P ) \mathrm{Int}(P) Int(P)表示 P P PThe set of all the intervals above, (The empty set is not an interval)
- 令 K K K为一个域, 定义 f : I n t ( P ) → K f:{\rm Int}(P)\to K f:Int(P)→K, 用 f ( x , y ) f(x,y) f(x,y)表示 f ( [ x , y ] ) f([x,y]) f([x,y]).
P P P在 K K K上的Associative Algebra I ( P , K ) I(P,K) I(P,K)定义为: by all functions f : I n t ( P ) → K f:{\rm Int}(P)\to K f:Int(P)→K构成的 K K K-代数, 其中乘法(卷积)定义为:
( f g ) ( x , y ) = ∑ x ≤ ⋅ z ≤ y f ( x , z ) g ( z , y ) . (fg)(x,y)=\sum_{x\leq {\Large{}_{\stackrel{\!\,{}_z}{\,\!{}^\cdot}}}\leq y}f(x,z)g(z, y). (fg)(x,y)=x≤⋅z≤y∑f(x,z)g(z,y).
and associative algebra I ( P , K ) I(P,K) I(P,K)There is a combination of bilateral unit cells K K K-代数, 单位元记为 δ \delta δ或者 1 1 1,定义为
KaTeX parse error: Undefined control sequence: \mbox at position 34: …in{cases} 1, & \̲m̲b̲o̲x̲{if}\ x=y,\\ 0…
number field K = C K=\mathbb C K=C即可, 可将 I ( P , C ) I(P,\mathbb C) I(P,C)简记为 I ( P ) I(P) I(P).
另一种表达:
将 I ( P , K ) I(P,K) I(P,K)Treated by all formal expressions:
f = ∑ [ x , y ] ∈ I n t ( P ) f ( x , y ) [ x , y ] f=\sum_{[x,y]\in \mathrm{Int}(P)}f(x,y)[x,y] f=[x,y]∈Int(P)∑f(x,y)[x,y]
组成的, where convolution is defined as follows:
KaTeX parse error: Undefined control sequence: \mbox at position 39: …{cases} [x,w],&\̲m̲b̲o̲x̲{if }y=z,\\[5pt…
and by bilinear(允许 [ x , y ] [x,y] [x,y]infinite linear combination of )extended to all I ( P , K ) I(P,K) I(P,K).
Examples of limited cases
如果 P P P有限, The elements are denoted as x 1 , ⋯ , x n x_1,\cdots,x_n x1,⋯,xn, 其中 x i < x j ⇒ i < j x_i<x_j\Rightarrow i<j xi<xj⇒i<j, 于是 I ( P ) I(P) I(P)同构于 C \mathbb C C上满足: 若 x i ≰ x j x_i\not\leq x_j xi≤xj则 m i j = 0 m_{ij}=0 mij=0的上三角矩阵 M = ( m i j ) , 1 ≤ i , j ≤ n M=(m_{ij}),\ 1\le i,j\le n M=(mij), 1≤i,j≤nconstituted algebra. (可以从 m i j m_{ij} mij到 f ( x i , x j ) f(x_i,x_j) f(xi,xj)建立映射关系)
如果 P P P由下图给出, 则 I ( P ) I(P) I(P)Isomorphic to form
$$ \begin{bmatrix} ∗ & 0 & ∗ & 0 & ∗\\ 0 & ∗ & ∗ & ∗ & ∗\\ 0 & 0 & ∗ & 0 & ∗\\ 0 & 0 & 0 & ∗ & ∗\\ 0 & 0 & 0 & 0 & ∗\\ \end{bmatrix} $$ The algebra of matrix formation. 性质
设 f ∈ I ( P ) f\in I(P) f∈I(P), Then the following conditions are equivalent:
- f f fhas a left inverse;
- f f fhas a right inverse;
- f f fThere is a two-sided inverse(Must be the only left and right inverse);
- f ( x , x ) ≠ 0 , ∀ x ∈ P f(x,x)\ne0,\ \forall x\in P f(x,x)=0, ∀x∈P成立.
进一步, 如果 f − 1 f^{-1} f−1存在, 则 f − 1 ( x , y ) f^{-1}(x,y) f−1(x,y)Depends only on partially ordered sets [ x , y ] [x,y] [x,y].
证明:
设 f g = δ fg=\delta fg=δ, 等价于 ∀ x ∈ P \forall x\in P ∀x∈P, 有 f ( x , x ) g ( x , x ) = 1 f(x,x)g(x,x)=1 f(x,x)g(x,x)=1, ∀ x , y ∈ P \forall x,y\in P ∀x,y∈P, 且满足 x < y x<y x<y, 有
KaTeX parse error: Limit controls must follow a math operator at position 35: …-1}{\large\sum}\̲l̲i̲m̲i̲t̲s̲_{x<z\le y}f(x,…
于是 f f fhas a right inverse g * ∀ x ∈ P , f ( x , x ) ≠ 0 g\iff \forall x\in P, f(x,x)\ne0 g*∀x∈P,f(x,x)=0, 并且此时 f − 1 ( x , y ) f^{-1}(x,y) f−1(x,y)仅取决于 [ x , y ] [x,y] [x,y].
同理, 设 h f = δ hf=\delta hf=δ, 即得到 f f fhas a right inverse * ∀ x ∈ P , f ( x , x ) ≠ 0 * f \iff\forall x\in P, f(x,x)\ne0\iff f *∀x∈P,f(x,x)=0*fhas a right inverse.
另外, 由 f g = δ , h f = δ fg=\delta,hf=\delta fg=δ,hf=δ, 得到 g = h g=h g=h.
Useful functions in associative algebra
zeta函数
ζ ( x , y ) = 1 , ∀ x , y ∈ P , x ≤ y \zeta(x,y)=1,\forall x,y\in P, x\le y ζ(x,y)=1,∀x,y∈P,x≤y. 所以有
KaTeX parse error: Undefined control sequence: \mbox at position 52: …{x\le z\le y}1=\̲m̲b̲o̲x̲{card}[x,y],\\[…
即从 x x x到 y y y的长度为 k k kthe number of heavy chains. 类似有
( ζ − 1 ) ( x , y ) = { 1 , x < y , 0 , x = y . (\zeta-1)(x,y)=\begin{cases} 1,&x<y,\\ 0,&x=y. \end{cases} (ζ−1)(x,y)={ 1,0,x<y,x=y.
于是 ( ζ − 1 ) k ( x , y ) (\zeta-1)^k(x,y) (ζ−1)k(x,y)是从 x x x到 y y y的长度为 k k k的链 x = x 0 < x 1 < ⋯ < x k = y x=x_0< x_1<\cdots < x_k= y x=x0<x1<⋯<xk=y的条数.
下面是 ( 2 − ζ ) ( x , y ) ∈ I ( P ) (2-\zeta)(x,y)\in I(P) (2−ζ)(x,y)∈I(P),
( 2 − ζ ) ( x , y ) = { 1 , x = y , − 1 , x < y . (2-\zeta)(x,y)=\begin{cases} 1,&x=y,\\ -1,&x<y. \end{cases} (2−ζ)(x,y)={ 1,−1,x=y,x<y.
Möbius反演
discussed above, 局部有限偏序集 P P P的zeta函数 ζ \zeta ζ可逆, Its inverse is called P P P的Möbius函数, 记为 μ \mu μ(或者 μ P \mu_P μP). Definition by induction, 可得到:
KaTeX parse error: Expected group after '_' at position 111: … \mu(x,y)=-\sum_̲\limits{x\le z<…
The second formula can be passed directly ( 1 ) (1) (1)After substituting in the formula, it is expanded.
Möbius反演公式
设 P P Pis a partially ordered set that is ideally finite for all main orders, 令 f , g : P → C f,g: P\to\mathbb C f,g:P→C, 有
g ( x ) = ∑ y ≤ x f ( y ) , ∀ x ∈ P , (2) g(x)=\sum_{y\le x}f(y),\quad\forall x\in P,\tag2 g(x)=y≤x∑f(y),∀x∈P,(2)
当且仅当
f ( x ) = ∑ y ≤ x g ( y ) μ ( y , x ) , ∀ x ∈ P . f(x)=\sum_{y\le x}g(y)\mu(y,x),\quad \forall x\in P. f(x)=y≤x∑g(y)μ(y,x),∀x∈P.
See the original English book for this proof. There is a way to prove it by trivial computation, I feel a little better to understand.(The role of subspaces is a bit abstract) 假定 ( 2 ) (2) (2)成立, 则有
∑ y ≤ x g ( y ) μ ( y , x ) = ∑ y ≤ x μ ( y , x ) ∑ z ≤ y f ( z ) = ∑ z ≤ x f ( z ) ∑ z ≤ y ≤ x μ ( y , x ) = ∑ z ≤ x f ( z ) δ ( z , x ) = f ( x ) \begin{aligned} \sum_{y\le x}g(y)\mu(y,x)&=\sum_{y\le x}\mu(y,x)\sum_{z\le y}f(z)\\ &=\sum_{z\le x}f(z)\sum_{z\le y \le x}\mu(y,x)\\ &=\sum_{z \le x}f(z)\delta(z,x)=f(x) \end{aligned} y≤x∑g(y)μ(y,x)=y≤x∑μ(y,x)z≤y∑f(z)=z≤x∑f(z)z≤y≤x∑μ(y,x)=z≤x∑f(z)δ(z,x)=f(x)
where the penultimate equal sign holds because :
δ ( z , x ) = ( ζ μ ) ( z , x ) = ∑ z ≤ y ≤ x ζ ( z , y ) μ ( y , x ) = ∑ z ≤ y ≤ x μ ( y , x ) \delta(z,x)=(\zeta\mu)(z,x)=\sum_{z\le y\le x}\zeta(z,y)\mu(y,x)=\sum_{z\le y\le x}\mu(y,x) δ(z,x)=(ζμ)(z,x)=z≤y≤x∑ζ(z,y)μ(y,x)=z≤y≤x∑μ(y,x)
对偶形式
设 P P Pis an all-primary-dual order ideal V x V_x Vxare finite partially ordered sets, 令 f , g ∈ C P f,g\in \mathbb C^P f,g∈CP, 则有
g ( x ) = ∑ y ≥ x f ( y ) , ∀ x ∈ P , g(x)=\sum_{y\ge x}f(y),\quad \forall x\in P, g(x)=y≥x∑f(y),∀x∈P,
当且仅当
f ( x ) = ∑ y ≥ x μ ( x , y ) g ( y ) , ∀ x ∈ P . f(x)=\sum_{y\ge x}\mu(x,y)g(y), \quad \forall x\in P. f(x)=y≥x∑μ(x,y)g(y),∀x∈P.
一个例子: MöbiusThe meaning of the inversion formula
Recall an example from the beginning of this chapter: 有限集合 A , B , C , D A,B,C,D A,B,C,D, 满足:
D = A ∩ B = A ∩ C = B ∩ C = A ∩ B ∩ C , D=A\cap B=A\cap C=B\cap C=A\cap B\cap C, D=A∩B=A∩C=B∩C=A∩B∩C,
通过容斥原理得到:
∣ A ∪ B ∪ C ∣ = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ∩ B ∣ − ∣ A ∩ C ∣ − ∣ B ∩ C ∣ + ∣ A ∩ B ∩ C ∣ = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − 2 ∣ D ∣ \begin{aligned} |A\cup B\cup C|&=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|\\ &=|A|+|B|+|C|-2|D| \end{aligned} ∣A∪B∪C∣=∣A∣+∣B∣+∣C∣−∣A∩B∣−∣A∩C∣−∣B∩C∣+∣A∩B∩C∣=∣A∣+∣B∣+∣C∣−2∣D∣
下面通过MöbiusInversion explains the above equation:
给定 n n na limited set S 1 , . . . , S n S_1,...,S_n S1,...,Sn, 令 P P Pfor them allThe intersection is under the containment relationPartially ordered set, This includes air delivery S 1 ∪ ⋯ ∪ S n = 1 ^ S_1\cup\cdots\cup S_n=\hat1 S1∪⋯∪Sn=1^, 若 T ∈ P T\in P T∈P, 令 f ( T ) f(T) f(T)表示 P P P中属于 T T T但不属于任何 T ′ < T T'<T T′<T的元素的个数, 令 g ( T ) = ∣ T ∣ g(T)=|T| g(T)=∣T∣.
The following is found by the above inversion formula
∣ S 1 ∪ ⋯ ∪ S n ∣ = ∑ T ≤ 1 ^ f ( T ) = g ( 1 ^ ) , |S_1\cup\cdots\cup S_n|=\sum_{T\le \hat1}f(T)=g(\hat1), ∣S1∪⋯∪Sn∣=T≤1^∑f(T)=g(1^),
的表达式, 已知:
g ( T ) = ∑ T ′ ≤ T f ( T ′ ) , g(T)=\sum_{T'\le T}f(T'), g(T)=T′≤T∑f(T′),
由 P P P上的Möbius反演得到
0 = f ( 1 ^ ) = ∑ T ∈ P g ( T ) μ ( T , 1 ^ ) = ∑ T ≤ 1 ^ g ( T ) μ ( T , 1 ^ ) = g ( 1 ^ ) μ ( 1 ^ , 1 ^ ) + ∑ T < 1 ^ ∣ T ∣ μ ( T , 1 ^ ) ⇒ g ( 1 ^ ) = − ∑ T < 1 ^ ∣ T ∣ μ ( T , 1 ^ ) . \begin{aligned} 0=f(\hat1)&=\sum_{T\in P}g(T)\mu(T,\hat1)\\ &=\sum_{T\le \hat1}g(T)\mu(T,\hat1)\\ &=g(\hat1)\mu(\hat1,\hat1)+\sum_{T< \hat1}|T|\mu(T,\hat1)\\ \Rightarrow g(\hat1)&=-\sum_{T<\hat1}|T|\mu(T,\hat1). \end{aligned} 0=f(1^)⇒g(1^)=T∈P∑g(T)μ(T,1^)=T≤1^∑g(T)μ(T,1^)=g(1^)μ(1^,1^)+T<1^∑∣T∣μ(T,1^)=−T<1^∑∣T∣μ(T,1^).
于是, The above example can be directly given by the inversion formula(Hasse图如下), 其中
0 = δ ( A , 1 ^ ) = ( μ ζ ) ( A , 1 ^ ) = ∑ A ≤ z ≤ 1 ^ μ ( A , z ) ζ ( z , 1 ^ ) = μ ( A , A ) ζ ( A , 1 ^ ) + μ ( A , 1 ^ ) ζ ( 1 ^ , 1 ^ ) = 1 + μ ( A , 1 ^ ) ⇒ μ ( A , 1 ^ ) = μ ( B , 1 ^ ) = μ ( C , 1 ^ ) = − 1 \begin{aligned} 0&=\delta(A,\hat1)=(\mu\zeta)(A,\hat1)\\ &=\sum_{A\le z\le \hat1}\mu(A,z)\zeta(z,\hat1)\\ &=\mu(A,A)\zeta(A,\hat1)+\mu(A,\hat1)\zeta(\hat1,\hat1)=1+\mu(A,\hat1)\\[5pt] \Rightarrow& \mu(A,\hat1)=\mu(B,\hat1)=\mu(C,\hat1)=-1 \end{aligned} 0⇒=δ(A,1^)=(μζ)(A,1^)=A≤z≤1^∑μ(A,z)ζ(z,1^)=μ(A,A)ζ(A,1^)+μ(A,1^)ζ(1^,1^)=1+μ(A,1^)μ(A,1^)=μ(B,1^)=μ(C,1^)=−1
0 = δ ( D , 1 ^ ) = ( μ ζ ) ( D , 1 ^ ) = ∑ D ≤ z ≤ 1 ^ μ ( D , z ) ζ ( z , 1 ^ ) = μ ( D , D ) ζ ( D , 1 ^ ) + μ ( D , A ) ζ ( A , 1 ^ ) + μ ( D , B ) ζ ( B , 1 ^ ) + μ ( D , C ) ζ ( C , 1 ^ ) + μ ( D , 1 ^ ) ζ ( 1 ^ , 1 ^ ) = 1 + ( − 3 ) + μ ( D , 1 ^ ) ⇒ μ ( D , 1 ^ ) = 2 \begin{aligned} 0&=\delta(D,\hat1)=(\mu\zeta)(D,\hat1)\\ &=\sum_{D\le z\le \hat1}\mu(D,z)\zeta(z,\hat1)\\ &=\mu(D,D)\zeta(D,\hat1)+\mu(D,A)\zeta(A,\hat1)+\mu(D,B)\zeta(B,\hat1)\\ &+\mu(D,C)\zeta(C,\hat1)+\mu(D,\hat1)\zeta(\hat1,\hat1)\\ &=1+(-3)+\mu(D,\hat1)\\[5pt] \Rightarrow& \mu(D,\hat1)=2 \end{aligned} 0⇒=δ(D,1^)=(μζ)(D,1^)=D≤z≤1^∑μ(D,z)ζ(z,1^)=μ(D,D)ζ(D,1^)+μ(D,A)ζ(A,1^)+μ(D,B)ζ(B,1^)+μ(D,C)ζ(C,1^)+μ(D,1^)ζ(1^,1^)=1+(−3)+μ(D,1^)μ(D,1^)=2

边栏推荐
- go mode tidy出现报错go warning “all“ matched no packages
- Design and Implementation of Compiler Based on C Language
- 【luogu P8326】Fliper (Graph Theory) (Construction) (Eulerian Circuit)
- TestCafe总结
- LeetCode_733_图像渲染
- [7.28] Code Source - [Fence Painting] [Appropriate Pairs (Data Enhanced Version)]
- 牛客 HJ17 坐标移动
- 【7.28】代码源 - 【Fence Painting】【合适数对(数据加强版)】
- 【7.29】Code Source - 【Arrangement】【Stone Game II】【Cow and Snacks】【Minimum Number of Spawns】【Sequence】
- 【pytorch】1.7 pytorch与numpy,tensor与array的转换
猜你喜欢

After Effects 教程,如何在 After Effects 中调整过度曝光的快照?

如何识别假爬虫?

C语言-函数

深度学习机器学习理论及应用实战-必备知识点整理分享

上传图片-微信小程序(那些年的坑记录2022.4)

i.MX6ULL驱动开发 | 33 - NXP原厂网络设备驱动浅读(LAN8720 PHY)

华为顶级工程师历时9年总结的“趣谈网络协议”PDF文档,太强了

2022年整理LeetCode最新刷题攻略分享(附中文详细题解)

智能垃圾桶(九)——震动传感器(树莓派pico实现)
![[pytorch] pytorch automatic derivation, Tensor and Autograd](/img/99/c9632a7d3f70a13e1e26b9aa67b8b9.png)
[pytorch] pytorch automatic derivation, Tensor and Autograd
随机推荐
adb shell 报错error: device unauthorized
The 2nd China PWA Developer Day
Baidu cloud web speed playback (is there any website available)
AcWing 1282. Search Keyword Problem Solution ((AC Automata) Trie+KMP)+bfs)
Design and Implementation of Compiler Based on C Language
21.支持向量机—核函数的介绍
go图书管理系统
IP协议从0到1
Three aspects of Ali: How to solve the problem of MQ message loss, duplication and backlog?
SHELL内外置命令
多主复制下处理写冲突(1)-同步与异步冲突检测及避免冲突
【pytorch】1.7 pytorch与numpy,tensor与array的转换
C language - function
A common method and the use of selenium
上传图片-微信小程序(那些年的坑记录2022.4)
UserAgent 解析
GateWay实现负载均衡
组合学笔记(六)局部有限偏序集的关联代数,Möbius反演公式
【愚公系列】2022年07月 Go教学课程 022-Go容器之字典
入职一个月反思