当前位置:网站首页>Station B Liu Erden softmx classifier and MNIST implementation -structure 9
Station B Liu Erden softmx classifier and MNIST implementation -structure 9
2022-07-06 05:42:00 【Ning Ranye】
Series articles :
List of articles
softmax classifier


Loss function : Cross entropy

Numpty Realize the cross entropy loss function

Pytorch Realized cross entropy loss 

MNIST Realization




Guide pack
import torch
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
# Use relu()
import torch.nn.functional as F
# Construct optimizer
import torch.optim as optim
1- Prepare the data
# 1- Prepare the data
batch_size = 64
# take PIL Image capture and change to Tensor
transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))])
train_dataset = datasets.MNIST(root='./datasets/mnist', train=True,
transform=transforms,
download=False)
test_dataset = datasets.MNIST(root='./datasets/mnist', train=False,
transform=transforms,
download=False)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,
shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size,
shuffle=False)
2- Design the network model
# 2- Design the network model
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.lay1 = torch.nn.Linear(784,512)
self.lay2 = torch.nn.Linear(512,256)
self.lay3 = torch.nn.Linear(256,128)
self.lay4 = torch.nn.Linear(128,64)
self.lay5 = torch.nn.Linear(64,10)
def forward(self,x):
x = x.view(-1,784)
x = F.relu(self.lay1(x))
x = F.relu(self.lay2(x))
x = F.relu(self.lay3(x))
x = F.relu(self.lay4(x))
x = F.relu(self.lay5(x))
return x
3- Build a model 、 Loss function 、 Optimizer
# 3- Construct loss function and optimizer
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.005,momentum=0.5)
4- Training 、 test
# 4- Training test
def train(epoch):
running_loss = 0.0
# enumerate(train_loader, 0): batch_idx from 0 Count
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
# forward + backward + update
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if(batch_idx % 300 == 299):
print('[%d, %5d] loss: %.3f'%(epoch + 1, batch_idx + 1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
# The test does not need to generate a calculation diagram , No gradient update is required 、 Back propagation
with torch.no_grad():
# data yes len =2 Of list
# input yes data[0], target yes data[1]
for data in test_loader:
images, label = data
outputs = model(images)
# _ Is the maximum value returned , predicted Is the subscript corresponding to the maximum
_, predicted = torch.max(outputs.data, dim=1)
total += label.size(0)
correct += (predicted == label).sum().item()
print('Accutacy on test set : %d %%'%(100*correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
About :(predicted == label).sum()
Will predicted Each element in is associated with the corresponding position label Opposite edge , Same back True, Different back False. .sum Seeking True The number of 
inputs, target = data Explain the assignment 
Complete code
import torch
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
# Use relu()
import torch.nn.functional as F
# Construct optimizer
import torch.optim as optim
# 1- Prepare the data
batch_size = 64
# take PIL Image capture and change to Tensor
transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))])
train_dataset = datasets.MNIST(root='./datasets/mnist', train=True,
transform=transforms,
download=False)
test_dataset = datasets.MNIST(root='./datasets/mnist', train=False,
transform=transforms,
download=False)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,
shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size,
shuffle=False)
# 2- Design the network model
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.lay1 = torch.nn.Linear(784,512)
self.lay2 = torch.nn.Linear(512,256)
self.lay3 = torch.nn.Linear(256,128)
self.lay4 = torch.nn.Linear(128,64)
self.lay5 = torch.nn.Linear(64,10)
def forward(self,x):
x = x.view(-1,784)
x = F.relu(self.lay1(x))
x = F.relu(self.lay2(x))
x = F.relu(self.lay3(x))
x = F.relu(self.lay4(x))
x = F.relu(self.lay5(x))
return x
# 3- Construct loss function and optimizer
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.005,momentum=0.5)
# 4- Training test
def train(epoch):
running_loss = 0.0
# enumerate(train_loader, 0): batch_idx from 0 Count
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
# forward + backward + update
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if(batch_idx % 300 == 299):
print('[%d, %5d] loss: %.3f'%(epoch + 1, batch_idx + 1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
# The test does not need to generate a calculation diagram , No gradient update is required 、 Back propagation
with torch.no_grad():
for data in test_loader:
images, label = data
outputs = model(images)
# _ Is the maximum value returned , predicted Is the subscript corresponding to the maximum
_, predicted = torch.max(outputs.data, dim=1)
total += label.size(0)
correct += (predicted == label).sum().item()
print('Accutacy on test set : %d %%'%(100*correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
边栏推荐
- Codeforces Round #804 (Div. 2) Editorial(A-B)
- [cloud native] 3.1 kubernetes platform installation kubespher
- 大型网站如何选择比较好的云主机服务商?
- Analysis of grammar elements in turtle Library
- Web Security (VI) the use of session and the difference between session and cookie
- Safe mode on Windows
- 【云原生】3.1 Kubernetes平台安装KubeSpher
- [Tang Laoshi] C -- encapsulation: classes and objects
- 【torch】|torch. nn. utils. clip_ grad_ norm_
- Selective parameters in MATLAB functions
猜你喜欢

28io stream, byte output stream writes multiple bytes
![[Jiudu OJ 08] simple search x](/img/a7/12a00c5d1db2deb064ff5f2e83dc58.jpg)
[Jiudu OJ 08] simple search x

B站刘二大人-Softmx分类器及MNIST实现-Lecture 9

First acquaintance with CDN

网站进行服务器迁移前应做好哪些准备?
![[Tang Laoshi] C -- encapsulation: classes and objects](/img/4e/30d2d4652ea2d4cd5fa7cbbb795863.jpg)
[Tang Laoshi] C -- encapsulation: classes and objects

Easy to understand IIC protocol explanation

【云原生】3.1 Kubernetes平台安装KubeSpher

大型网站如何选择比较好的云主机服务商?

Questions d'examen écrit classiques du pointeur
随机推荐
自建DNS服务器,客户端打开网页慢,解决办法
Self built DNS server, the client opens the web page slowly, the solution
Notes, continuation, escape and other symbols
Web Security (V) what is a session? Why do I need a session?
The ECU of 21 Audi q5l 45tfsi brushes is upgraded to master special adjustment, and the horsepower is safely and stably increased to 305 horsepower
HAC集群修改管理员用户密码
UCF(2022暑期团队赛一)
Unity gets the width and height of Sprite
HAC cluster modifying administrator user password
The digital economy has broken through the waves. Is Ltd a Web3.0 website with independent rights and interests?
01. Project introduction of blog development project
Game push: image / table /cv/nlp, multi-threaded start!
Check the useful photo lossless magnification software on Apple computer
Processes and threads
[Tang Laoshi] C -- encapsulation: classes and objects
The ECU of 21 Audi q5l 45tfsi brushes is upgraded to master special adjustment, and the horsepower is safely and stably increased to 305 horsepower
清除浮动的方式
Zoom and pan image in Photoshop 2022
Codeforces Round #804 (Div. 2) Editorial(A-B)
[JVM] [Chapter 17] [garbage collector]