当前位置:网站首页>Windows 10 tensorflow (2) regression analysis of principles, deep learning framework (gradient descent method to solve regression parameters)
Windows 10 tensorflow (2) regression analysis of principles, deep learning framework (gradient descent method to solve regression parameters)
2020-11-06 01:22:00 【Elementary school students in IT field】
windows10 tensorflow( Two ) Regression analysis of principle and actual combat , Deep learning framework ( The gradient descent method is used to solve the regression parameters )
TF Data generation : Reference resources TF The data generated 12 Law
TF Basic principles and conceptual understanding : tensorflow( One )windows 10 64 Bit installation tensorflow1.4 And basic concept interpretation tf.global_variables_initializer
Model :
A simple linear regression y = W * x + b, use numpy Building complete regression data , And increase interference noise
import numpy as np
# Establish a linear regression equation of one variable y=0.1x1+0.3 , At the same time, a positive distribution deviation np.random.normal(0.0,0.03) For witnessing TF The algorithm of
num_points=1000
vectors_set=[]
for i in range(num_points):
x1=np.random.normal(loc=0.0,scale=0.66)
y1=x1*0.1+0.3+np.random.normal(0.0,0.03)
vectors_set.append([x1,y1])
x_data=[v[0] for v in vectors_set]
y_data=[v[1] for v in vectors_set]
Graphic display Data distribution results
import matplotlib.pyplot as plt
#https://www.cnblogs.com/zqiguoshang/p/5744563.html
##line_styles=['ro-','b^-','gs-','ro--','b^--','gs--'] #set line style
plt.plot(x_data,y_data,'ro',marker='^',c='blue',label='original_data')
plt.legend()
plt.show()
adopt TensorFlow The code finds the best parameters W And b, Make the input data of x_data, Generate output data y_data, In this case, there will be a straight line y_data=W*x_data+b. The reader knows W It will be close 0.1,b near 0.3, however TensorFlow Don't know , It needs to calculate the value itself . Therefore, the gradient descent method is used to solve the data iteratively
import tensorflow as tf
import math
# One 、 establish graph data
# Arbitrarily construct the parameters of a univariate regression equation W And b
W=tf.Variable(tf.random_uniform([1], minval=-1.0, maxval=1.0))
b=tf.Variable(tf.zeros([1]))
y=W*x_data+b
# Define the following minimum variance
#1. Define the minimum square root of error
loss=tf.reduce_mean(tf.square(y-y_data))
#2.learning_rate=0.5
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.5)
#3. Optimize the minimum
train=optimizer.minimize(loss)
# Two 、 Initialize variable
init=tf.global_variables_initializer()
# 3、 ... and 、 start-up graph
sess=tf.Session()
sess.run(init)
for step in range(8):
sess.run(train)
print("step={},sess.run=(W)={},sess.run(b)={}".format(step,sess.run(W),sess.run(b)))
Here's the iteration 8 Results of . Gradient is like a compass , Guiding us in the smallest direction . To calculate the gradient ,TensorFlow It will take the derivative of the wrong function , In our case , The algorithm needs to work on W and b Calculating partial derivatives , To indicate the direction of advance in each iteration .
The following is the visualization of each iteration :
#Graphic display
# print(sub_1+'41')
# Be careful : You can use commas for each parameter , Separate . The first parameter represents the number of rows in the subgraph ; The second parameter represents the number of columns in the row of images ; The third parameter represents the number of images in each row , From left to right , From top to next add .
plt.subplot(4,2,step+1)
plt.plot(x_data,y_data,'ro')
plt.plot(x_data,sess.run(W)*x_data+
sess.run(b),label=step)
plt.legend()
plt.show()
版权声明
本文为[Elementary school students in IT field]所创,转载请带上原文链接,感谢
边栏推荐
- DRF JWT authentication module and self customization
- Summary of common string algorithms
- “颜值经济”的野望:华熙生物净利率六连降,收购案遭上交所问询
- 至联云分享:IPFS/Filecoin值不值得投资?
- 大数据应用的重要性体现在方方面面
- DevOps是什么
- How to select the evaluation index of classification model
- Process analysis of Python authentication mechanism based on JWT
- 一篇文章带你了解CSS3圆角知识
- The choice of enterprise database is usually decided by the system architect - the newstack
猜你喜欢
随机推荐
做外包真的很难,身为外包的我也无奈叹息。
Flink on paasta: yelp's new stream processing platform running on kubernetes
Filecoin最新动态 完成重大升级 已实现四大项目进展!
htmlcss
Want to do read-write separation, give you some small experience
DRF JWT authentication module and self customization
容联完成1.25亿美元F轮融资
Skywalking series blog 5-apm-customize-enhance-plugin
Not long after graduation, he earned 20000 yuan from private work!
ipfs正舵者Filecoin落地正当时 FIL币价格破千来了
After brushing leetcode's linked list topic, I found a secret!
How to select the evaluation index of classification model
Details of dapr implementing distributed stateful service
Using consult to realize service discovery: instance ID customization
Summary of common algorithms of binary tree
一篇文章带你了解CSS3圆角知识
Summary of common algorithms of linked list
What problems can clean architecture solve? - jbogard
(2)ASP.NET Core3.1 Ocelot路由
PHP应用对接Justswap专用开发包【JustSwap.PHP】