当前位置:网站首页>Windows 10 tensorflow (2) regression analysis of principles, deep learning framework (gradient descent method to solve regression parameters)
Windows 10 tensorflow (2) regression analysis of principles, deep learning framework (gradient descent method to solve regression parameters)
2020-11-06 01:22:00 【Elementary school students in IT field】
windows10 tensorflow( Two ) Regression analysis of principle and actual combat , Deep learning framework ( The gradient descent method is used to solve the regression parameters )
TF Data generation : Reference resources TF The data generated 12 Law
TF Basic principles and conceptual understanding : tensorflow( One )windows 10 64 Bit installation tensorflow1.4 And basic concept interpretation tf.global_variables_initializer
Model :
A simple linear regression y = W * x + b, use numpy Building complete regression data , And increase interference noise
import numpy as np
# Establish a linear regression equation of one variable y=0.1x1+0.3 , At the same time, a positive distribution deviation np.random.normal(0.0,0.03) For witnessing TF The algorithm of
num_points=1000
vectors_set=[]
for i in range(num_points):
x1=np.random.normal(loc=0.0,scale=0.66)
y1=x1*0.1+0.3+np.random.normal(0.0,0.03)
vectors_set.append([x1,y1])
x_data=[v[0] for v in vectors_set]
y_data=[v[1] for v in vectors_set]
Graphic display Data distribution results
import matplotlib.pyplot as plt
#https://www.cnblogs.com/zqiguoshang/p/5744563.html
##line_styles=['ro-','b^-','gs-','ro--','b^--','gs--'] #set line style
plt.plot(x_data,y_data,'ro',marker='^',c='blue',label='original_data')
plt.legend()
plt.show()

adopt TensorFlow The code finds the best parameters W And b, Make the input data of x_data, Generate output data y_data, In this case, there will be a straight line y_data=W*x_data+b. The reader knows W It will be close 0.1,b near 0.3, however TensorFlow Don't know , It needs to calculate the value itself . Therefore, the gradient descent method is used to solve the data iteratively
import tensorflow as tf
import math
# One 、 establish graph data
# Arbitrarily construct the parameters of a univariate regression equation W And b
W=tf.Variable(tf.random_uniform([1], minval=-1.0, maxval=1.0))
b=tf.Variable(tf.zeros([1]))
y=W*x_data+b
# Define the following minimum variance
#1. Define the minimum square root of error
loss=tf.reduce_mean(tf.square(y-y_data))
#2.learning_rate=0.5
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.5)
#3. Optimize the minimum
train=optimizer.minimize(loss)
# Two 、 Initialize variable
init=tf.global_variables_initializer()
# 3、 ... and 、 start-up graph
sess=tf.Session()
sess.run(init)
for step in range(8):
sess.run(train)
print("step={},sess.run=(W)={},sess.run(b)={}".format(step,sess.run(W),sess.run(b)))
Here's the iteration 8 Results of . Gradient is like a compass , Guiding us in the smallest direction . To calculate the gradient ,TensorFlow It will take the derivative of the wrong function , In our case , The algorithm needs to work on W and b Calculating partial derivatives , To indicate the direction of advance in each iteration .

The following is the visualization of each iteration :
#Graphic display
# print(sub_1+'41')
# Be careful : You can use commas for each parameter , Separate . The first parameter represents the number of rows in the subgraph ; The second parameter represents the number of columns in the row of images ; The third parameter represents the number of images in each row , From left to right , From top to next add .
plt.subplot(4,2,step+1)
plt.plot(x_data,y_data,'ro')
plt.plot(x_data,sess.run(W)*x_data+
sess.run(b),label=step)
plt.legend()
plt.show()

版权声明
本文为[Elementary school students in IT field]所创,转载请带上原文链接,感谢
边栏推荐
- Summary of common algorithms of binary tree
- 10 easy to use automated testing tools
- Network security engineer Demo: the original * * is to get your computer administrator rights! 【***】
- Group count - word length
- “颜值经济”的野望:华熙生物净利率六连降,收购案遭上交所问询
- Want to do read-write separation, give you some small experience
- DevOps是什么
- 熬夜总结了报表自动化、数据可视化和挖掘的要点,和你想的不一样
- Can't be asked again! Reentrantlock source code, drawing a look together!
- OPTIMIZER_ Trace details
猜你喜欢

Face to face Manual Chapter 16: explanation and implementation of fair lock of code peasant association lock and reentrantlock

中小微企业选择共享办公室怎么样?

Examples of unconventional aggregation

小程序入门到精通(二):了解小程序开发4个重要文件

Do not understand UML class diagram? Take a look at this edition of rural love class diagram, a learn!

Python自动化测试学习哪些知识?

TRON智能钱包PHP开发包【零TRX归集】

git rebase的時候捅婁子了,怎麼辦?線上等……

业内首发车道级导航背后——详解高精定位技术演进与场景应用

axios学习笔记(二):轻松弄懂XHR的使用及如何封装简易axios
随机推荐
容联完成1.25亿美元F轮融资
I'm afraid that the spread sequence calculation of arbitrage strategy is not as simple as you think
速看!互联网、电商离线大数据分析最佳实践!(附网盘链接)
Polkadot series (2) -- detailed explanation of mixed consensus
Analysis of ThreadLocal principle
Character string and memory operation function in C language
Examples of unconventional aggregation
Can't be asked again! Reentrantlock source code, drawing a look together!
前端都应懂的入门基础-github基础
Skywalking series blog 2-skywalking using
Using consult to realize service discovery: instance ID customization
全球疫情加速互联网企业转型,区块链会是解药吗?
6.6.1 localeresolver internationalization parser (1) (in-depth analysis of SSM and project practice)
Deep understanding of common methods of JS array
一篇文章带你了解CSS对齐方式
Linked blocking Queue Analysis of blocking queue
Tool class under JUC package, its name is locksupport! Did you make it?
Nodejs crawler captures ancient books and records, a total of 16000 pages, experience summary and project sharing
Installing the consult cluster
Wiremock: a powerful tool for API testing