当前位置:网站首页>TensorFlow2 study notes: 4. The first neural network model, iris classification
TensorFlow2 study notes: 4. The first neural network model, iris classification
2022-08-04 06:04:00 【Live up to [email protected]】
关于鸢尾花数据集导入,之前已经分享了,Build your first neural network model today.
第一步、导入模块
import tensorflow as tf
import numpy as np
from sklearn import datasets #用于加载数据
from matplotlib import pyplot as plt #用于绘图
Imported are deep learning basic modules.
第二步、Loading data and pre-training data processing
1、加载数据
x_data=datasets.load_iris().data #特征集
y_data=datasets.load_iris().target #标签集
2、数据乱序
#seed 随机种子,种子一样,Randomly the same every time
#Use the same seed for both types of data,Make sure that feature data and label data correspond correctly
np.random.seed(85)
np.random.shuffle(x_data) #Similar to a random shuffle 打乱数据
np.random.seed(85)
np.random.shuffle(y_data) #Similar to a random shuffle 打乱数据
#Out-of-order data 训练集为前120条数据 永不相见
x_train=x_data[:-30]
y_train=y_data[:-30]
#Out-of-order data 测试集为后30条数据 永不相见
x_test=x_data[-30:]
y_test=y_data[-30:]
#转换x数据(特征集)的数据类型,Avoid back matrix multiplication,The data type is inconsistent and an error is reported
x_train=tf.cast(x_train,tf.float32)
x_test=tf.cast(x_test,tf.float32)
#Features match labels 打包为batch(批次)大小32
train_db=tf.data.Dataset.from_tensor_slices((x_train,y_train)).batch(32)
test_db=tf.data.Dataset.from_tensor_slices((x_test,y_test)).batch(32)
第三步、 生成神经网络
#输入有4个特征,所以,第一个参数,输入层:4
#因为是3分类,The output node is equal to the number of classifications;所以,输出层神经元:3 tf.random.truncated_normal([4,3]
w1=tf.Variable(tf.random.truncated_normal([4,3],stddev=0.1,seed=1))
#偏置b1 should be consistent with the number of output nodes,所以:3
b1=tf.Variable(tf.random.truncated_normal([3],stddev=0.1,seed=1))
lr=0.1 #学习率
train_loss_results=[] #loss列表
test_acc=[] #acc列表
epoch=500 #循环500轮
loss_all=0 #每轮分4个step,loss_all记录4个step生成的loss总和
for epoch in range(epoch):#Data level loop iteration,Iterate over the dataset once per loop
# print(epoch)
for step,(x_train,y_train) in enumerate(train_db):#batchPackage-level loop iterations
with tf.GradientTape() as tape: #记录梯度信息
y=tf.matmul(x_train,w1)+b1
y=tf.nn.softmax(y)
y_=tf.one_hot(y_train,depth=3)
loss=tf.reduce_mean(tf.square(y_-y))
loss_all+=loss.numpy()
grads=tape.gradient(loss,[w1,b1])
w1.assign_sub(lr*grads[0])
b1.assign_sub(lr*grads[1])
print("Epoch: {},loss:{}".format(epoch,loss_all/4))
train_loss_results.append(loss_all/4)
loss_all=0
total_correct,total_number=0,0
for x_test,y_test in test_db:
y=tf.matmul(x_test,w1)+b1
y=tf.nn.softmax(y)
pred=tf.argmax(y,axis=1)
pred=tf.cast(pred,dtype=y_test.dtype)
correct=tf.cast(tf.equal(pred,y_test),dtype=tf.int32)
correct=tf.reduce_sum(correct)
total_correct+=int(correct)
total_number+=x_test.shape[0]
acc=total_correct / total_number
test_acc.append(acc)
print("test acc:",acc)
print("-----------------------------")
第四步、 print curve,便于观察
plt.title("loss")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.plot(train_loss_results,label="$Loss$")
plt.legend()
plt.show()
plt.title("acc")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.plot(test_acc,label="$Accuracy$")
plt.legend()
plt.show()
第五步、 训练结果
训练过程:
损失:
准确率:
完整代码:
import tensorflow as tf
import numpy as np
from sklearn import datasets
from matplotlib import pyplot as plt
x_data=datasets.load_iris().data
y_data=datasets.load_iris().target
np.random.seed(85)
np.random.shuffle(x_data)
np.random.seed(85)
np.random.shuffle(y_data)
x_train=x_data[:-30]
y_train=y_data[:-30]
x_test=x_data[-30:]
y_test=y_data[-30:]
x_train=tf.cast(x_train,tf.float32)
x_test=tf.cast(x_test,tf.float32)
train_db=tf.data.Dataset.from_tensor_slices((x_train,y_train)).batch(32)
test_db=tf.data.Dataset.from_tensor_slices((x_test,y_test)).batch(32)
w1=tf.Variable(tf.random.truncated_normal([4,3],stddev=0.1,seed=1))
b1=tf.Variable(tf.random.truncated_normal([3],stddev=0.1,seed=1))
lr=0.1 #学习率
train_loss_results=[] #loss列表
test_acc=[] #acc列表
epoch=500 #循环500轮
loss_all=0 #每轮分4个step,loss_all记录4个step生成的loss总和
for epoch in range(epoch):#Data level loop iteration,Iterate over the dataset once per loop
# print(epoch)
for step,(x_train,y_train) in enumerate(train_db):#batchPackage-level loop iterations
with tf.GradientTape() as tape: #记录梯度信息
y=tf.matmul(x_train,w1)+b1
y=tf.nn.softmax(y)
y_=tf.one_hot(y_train,depth=3)
loss=tf.reduce_mean(tf.square(y_-y))
loss_all+=loss.numpy()
grads=tape.gradient(loss,[w1,b1])
w1.assign_sub(lr*grads[0])
b1.assign_sub(lr*grads[1])
print("Epoch: {},loss:{}".format(epoch,loss_all/4))
train_loss_results.append(loss_all/4)
loss_all=0
total_correct,total_number=0,0
for x_test,y_test in test_db:
y=tf.matmul(x_test,w1)+b1
y=tf.nn.softmax(y)
pred=tf.argmax(y,axis=1)
pred=tf.cast(pred,dtype=y_test.dtype)
correct=tf.cast(tf.equal(pred,y_test),dtype=tf.int32)
correct=tf.reduce_sum(correct)
total_correct+=int(correct)
total_number+=x_test.shape[0]
acc=total_correct / total_number
test_acc.append(acc)
print("test acc:",acc)
print("-----------------------------")
plt.title("loss")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.plot(train_loss_results,label="$Loss$")
plt.legend()
plt.show()
plt.title("acc")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.plot(test_acc,label="$Accuracy$")
plt.legend()
plt.show()
原网站
版权声明
本文为[Live up to [email protected]]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040525327721.html
边栏推荐
猜你喜欢
随机推荐
flink onTimer定时器实现定时需求
编程Go:内置打印函数 print、println 和 fmt 包中 fmt.Print、fmt.Println 的区别
es6 学习记录
字典特征提取,文本特征提取。
判断字符串是否有子字符串重复出现
flink-sql所有表连接器
JS深复制对象方法(深拷贝)
浏览器中的同源策略
flink sql left join数据倾斜问题解决
剑指 Offer 2022/7/12
智能合约安全——溢出漏洞
CTFshow—Web入门—信息(1-8)
Kubernetes集群安装
with recursive用法
MySQL事务详解(事务隔离级别、实现、MVCC、幻读问题)
SQL练习 2022/7/4
sql中group by的用法
【深度学习21天学习挑战赛】备忘篇:我们的神经网模型到底长啥样?——model.summary()详解
程序、进程、线程、协程的概念及区别
(十)树的基础部分(一)