当前位置:网站首页>【TFLite, ONNX, CoreML, TensorRT Export】
【TFLite, ONNX, CoreML, TensorRT Export】
2022-07-05 11:42:00 【Network starry sky (LUOC)】
List of articles
This guide explains how to export a trained YOLOv5 model from PyTorch to ONNX and TorchScript formats. UPDATED 18 May 2022.
Before You Start
Clone repo and install requirements.txt in a Python>=3.7.0 environment, including PyTorch>=1.7. Models and datasets download automatically from the latest YOLOv5 release.
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
For TensorRT export example (requires GPU) see our Colab notebook appendix section. Open In Colab
Formats
YOLOv5 inference is officially supported in 11 formats:
ProTip: TensorRT may be up to 2-5X faster than PyTorch on GPU
ProTip: ONNX and OpenVINO may be up to 2-3X faster than PyTorch on CPU
Export a Trained YOLOv5 Model
This command exports a pretrained YOLOv5s model to TorchScript and ONNX formats. yolov5s.pt
is the ‘small’ model, the second smallest model available. Other options are yolov5n.p
t, yolov5m.p
t, yolov5l.pt
and yolov5x.pt
, along with their P6 counterparts i.e. yolov5s6.pt
or you own custom training checkpoint i.e. runs/exp/weights/best.pt
. For details on all available models please see our README table.
python path/to/export.py --weights yolov5s.pt --include torchscript onnx
Output:
export: data=data/coco128.yaml, weights=yolov5s.pt, imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 v6.0-241-gb17c125 torch 1.10.0 CPU
Fusing layers...
Model Summary: 213 layers, 7225885 parameters, 0 gradients
PyTorch: starting from yolov5s.pt (14.7 MB)
TorchScript: starting export with torch 1.10.0...
TorchScript: export success, saved as yolov5s.torchscript (29.4 MB)
ONNX: starting export with onnx 1.10.2...
ONNX: export success, saved as yolov5s.onnx (29.3 MB)
Export complete (7.63s)
Results saved to /Users/glennjocher/PycharmProjects/yolov5
Detect: python detect.py --weights yolov5s.onnx
PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Validate: python val.py --weights yolov5s.onnx
Visualize: https://netron.app
The 3 exported models will be saved alongside the original PyTorch model:
Netron Viewer is recommended for visualizing exported models:
Example Usage of exported models
export.py will show Usage examples for the last export format indicated. For example for ONNX:
detect.py
runs inference on exported models:
python path/to/detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
val.py
runs validation on exported models:
python path/to/val.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS Only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
OpenCV DNN C++
Examples of YOLOv5 OpenCV DNN C++ inference on exported ONNX models can be found at
https://github.com/Hexmagic/ONNX-yolov5/blob/master/src/test.cpp
https://github.com/doleron/yolov5-opencv-cpp-python
Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):
Google Colab and Kaggle notebooks with free GPU: Open In Colab Open In Kaggle
Google Cloud Deep Learning VM. See GCP Quickstart Guide
Amazon Deep Learning AMI. See AWS Quickstart Guide
Docker Image. See Docker Quickstart Guide Docker Pulls
Status
If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
边栏推荐
- 【上采样方式-OpenCV插值】
- 解决grpc连接问题Dial成功状态为TransientFailure
- Empêcher le navigateur de reculer
- 1个插件搞定网页中的广告
- 我用开天平台做了一个城市防疫政策查询系统【开天aPaaS大作战】
- Unity Xlua MonoProxy Mono代理类
- SLAM 01. Modeling of human recognition Environment & path
- shell脚本文件遍历 str转数组 字符串拼接
- How did the situation that NFT trading market mainly uses eth standard for trading come into being?
- 【pytorch 修改预训练模型:实测加载预训练模型与模型随机初始化差别不大】
猜你喜欢
1个插件搞定网页中的广告
COMSOL -- three-dimensional graphics random drawing -- rotation
redis的持久化机制原理
12. (map data) cesium city building map
【pytorch 修改预训练模型:实测加载预训练模型与模型随机初始化差别不大】
全网最全的新型数据库、多维表格平台盘点 Notion、FlowUs、Airtable、SeaTable、维格表 Vika、飞书多维表格、黑帕云、织信 Informat、语雀
7.2 daily study 4
AutoCAD -- mask command, how to use CAD to locally enlarge drawings
Idea set the number of open file windows
MySQL giant pit: update updates should be judged with caution by affecting the number of rows!!!
随机推荐
查看多台机器所有进程
XML解析
871. Minimum Number of Refueling Stops
redis主从模式
Go language learning notes - first acquaintance with go language
How to protect user privacy without password authentication?
SLAM 01. Modeling of human recognition Environment & path
无密码身份验证如何保障用户隐私安全?
Acid transaction theory
Guys, I tested three threads to write to three MySQL tables at the same time. Each thread writes 100000 pieces of data respectively, using F
【Win11 多用户同时登录远程桌面配置方法】
COMSOL--建立几何模型---二维图形的建立
龙蜥社区第九次运营委员会会议顺利召开
redis主从中的Master自动选举之Sentinel哨兵机制
C # implements WinForm DataGridView control to support overlay data binding
管理多个Instagram帐户防关联小技巧大分享
Project summary notes series wstax kt session2 code analysis
COMSOL -- establishment of geometric model -- establishment of two-dimensional graphics
居家办公那些事|社区征文
如何通俗理解超级浏览器?可以用于哪些场景?有哪些品牌?