当前位置:网站首页>BigVision代码
BigVision代码
2022-07-03 03:06:00 【AphilGuo】
classifier
#ifndef CLASSIFIER_H
#define CLASSIFIER_H
#include<opencv2/opencv.hpp>
#include<opencv2/dnn.hpp>
#include<iostream>
#include<fstream>
#include<vector>
#include<opencv2/core/utils/logger.hpp>
#include <QString>
#include <QByteArray>
using namespace cv;
using namespace std;
class ONNXClassifier{
public:
ONNXClassifier(const string& model_path, Size input_size);
void Classifier(const Mat& input_image, string& out_name, double& confidence);
private:
void preprocess_input(Mat& image);
bool read_labels(const string& label_path);
private:
Size input_size;
cv::dnn::Net net;
cv::Scalar default_mean;
cv::Scalar default_std;
string m_labels[2]= {
"ant", "bee"};
};
#endif // CLASSIFIER_H
mianwindow.h
#ifndef MAINWINDOW_H
#define MAINWINDOW_H
#include <QMainWindow>
#include <QLabel>
#include <opencv2/opencv.hpp>
using namespace cv;
namespace Ui {
class MainWindow;
}
class MainWindow : public QMainWindow
{
Q_OBJECT
public:
explicit MainWindow(QWidget *parent = 0);
QImage MatToImage(Mat &m);
~MainWindow();
private slots:
void on_OpenImageButton_clicked();
void on_ResizeImageButton_clicked();
void on_ViewOriImageButton_clicked();
void on_GrayImaageButton_clicked();
void on_GaussionFiltterButton_clicked();
void on_BilateralFiltterButton_clicked();
void on_ErodeButton_clicked();
void on_DilateButton_clicked();
void on_ThreshButton_clicked();
void on_CannyDetectButton_clicked();
void on_ClassifierButton_clicked();
void on_ModelButton_clicked();
void on_ObjPushButton_clicked();
private:
Ui::MainWindow *ui;
Mat m_mat;
Mat* temp;
QLabel* pic;
Mat mid_mat;
QString modelPath;
String m_model;
};
#endif // MAINWINDOW_H
yolov3.h
#ifndef YOLOV3_H
#define YOLOV3_H
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
class YOLOV3
{
public:
YOLOV3(){
}
void InitModel(string weightFile);
void detectImg(Mat& img);
void drawImg(int classId, float confidence, int left, int top, int right, int bottom, Mat& img);
private:
string classes[80] = {
"person", "bicycle", "car", "motorbike", "aeroplane", "bus",
"train", "truck", "boat", "traffic light", "fire hydrant",
"stop sign", "parking meter", "bench", "bird", "cat", "dog",
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket",
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana", "apple", "sandwich", "orange", "broccoli", "carrot",
"hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant",
"bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse",
"remote", "keyboard", "cell phone", "microwave", "oven", "toaster",
"sink", "refrigerator", "book", "clock", "vase", "scissors",
"teddy bear", "hair drier", "toothbrush"
};
int inWidth = 416;
int inHeight = 416;
float confThreshold = 0.5;
float nmsThreshold = 0.5;
float objThreshold = 0.5;
vector<int> blob_size{
1, 3, 416, 416};
Mat blob = Mat(blob_size, CV_32FC1, Scalar(0, 0, 0));
vector<int> classids;
vector<int> indexes;
vector<float> confidences;
vector<Rect> boxes;
vector<Mat> outs;
dnn::Net net;
};
#endif // YOLOV3_H
main.cpp
#include "mainwindow.h"
#include <QApplication>
int main(int argc, char *argv[])
{
QApplication a(argc, argv);
MainWindow w;
w.show();
return a.exec();
}
main.window.cpp
#include "mainwindow.h"
#include "ui_mainwindow.h"
#include <QFileDialog>
#include <QDir>
#include<QDebug>
#include <QPixmap>
#include <QByteArray>
#include <QMessageBox>
#include <classifier.h>
#include "yolov3.h"
MainWindow::MainWindow(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::MainWindow)
{
ui->setupUi(this);
}
QImage MainWindow::MatToImage(Mat &m)
{
switch(m.type())
{
case CV_8UC1:
{
QImage img((uchar* )m.data, m.cols, m.rows, m.cols*1, QImage::Format_Grayscale8);
return img;
break;
}
case CV_8UC3:
{
QImage img((uchar* )m.data, m.cols, m.rows, m.cols*3, QImage::Format_RGB888);
return img.rgbSwapped();
break;
}
case CV_8UC4:
{
QImage img((uchar* )m.data, m.cols, m.rows, m.cols*4, QImage::Format_ARGB32);
return img;
break;
}
default:
{
QImage img;
return img;
}
}
}
MainWindow::~MainWindow()
{
delete ui;
delete pic;
delete temp;
}
void MainWindow::on_OpenImageButton_clicked()
{
auto strPath = QFileDialog::getOpenFileName(nullptr, "选择图片", QDir::homePath(),
"Images (*.png *.xpm *.jpg)");
pic = new QLabel;
pic->setPixmap(QPixmap(strPath));
ui->ViewImageScrollArea->setWidget(pic);
QByteArray ba;
ba.append(strPath);
m_mat = imread(ba.data());
mid_mat = m_mat.clone();
}
void MainWindow::on_ViewOriImageButton_clicked()
{
temp = &m_mat;
if(temp->empty()){
QMessageBox::warning(nullptr, "警告!", "请选择图片!!!");
return ;
}
QImage temp1 = MatToImage(*temp);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
// 在显示原图的同时
mid_mat = m_mat.clone();
}
void MainWindow::on_ResizeImageButton_clicked()
{
Mat* temp2 = &mid_mat;
if((*temp2).empty()){
QMessageBox::warning(nullptr, "警告!", "请选择图片!!!");
return ;
}
Mat dst;
// 添加鼠标滚轮调整参数
cv::resize(*temp2,dst, Size(400, 400));
QImage temp1 = MatToImage(dst);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = dst;
}
void MainWindow::on_GrayImaageButton_clicked()
{
Mat* temp2 = &mid_mat;
if((*temp2).empty()){
QMessageBox::warning(nullptr, "警告!", "请选择图片!!!");
return ;
}
Mat gray_img;
if((*temp2).type()==CV_8UC1){
QMessageBox::warning(nullptr, "操作有误", "此时图片为灰度图");
return;
}
cvtColor(*temp2, gray_img, COLOR_BGR2GRAY);
// qDebug()<<gray_img.type();
QImage temp1 = MatToImage(gray_img);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = gray_img;
}
void MainWindow::on_GaussionFiltterButton_clicked()
{
/*
对整幅图像进行加权平均,每一个像素都由其本身和领域内的其他
像素值经过加权平均后得到
*/
Mat* temp2 = &mid_mat;
if((*temp2).empty()){
QMessageBox::warning(nullptr, "警告", "请选择图片!!!");
return ;
}
Mat gaussianImg;
cv::GaussianBlur(*temp2, gaussianImg, cv::Size(5, 5), 0, 0);
QImage temp1 = MatToImage(gaussianImg);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = gaussianImg;
}
void MainWindow::on_BilateralFiltterButton_clicked()
{
/*
* 空域核、值域核
*/
Mat* temp2 = &mid_mat;
if((*temp2).empty()){
QMessageBox::warning(nullptr, "警告", "请选择图片!!!");
return ;
}
Mat bilateralImg, dst;
cv::bilateralFilter(*temp2, bilateralImg, 15, 100, 3);
Mat kernel = (Mat_<int>(3, 3)<<0, -1, 0, -1, 5, -1, 0, -1, 0);
filter2D(bilateralImg, dst, -1, kernel, Point(-1, -1), 0);
QImage temp1 = MatToImage(dst);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = dst;
}
void MainWindow::on_ErodeButton_clicked()
{
Mat* temp2 = &mid_mat;
if((*temp2).empty()){
QMessageBox::warning(nullptr, "警告", "请选择图片!!!");
return ;
}
// 获取结构元素
Mat erodeImg;
Mat structureElement = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5), Point(-1, -1));
cv::erode(*temp2, erodeImg, structureElement);
QImage temp1 = MatToImage(erodeImg);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = erodeImg;
}
void MainWindow::on_DilateButton_clicked()
{
Mat* temp2 = &mid_mat;
if((*temp2).empty()){
QMessageBox::warning(nullptr, "警告", "请选择图片!!!");
return;
}
Mat dilateImg;
Mat structureElement = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5), Point(-1, -1));
cv::dilate(*temp2, dilateImg, structureElement);
QImage temp1 = MatToImage(dilateImg);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = dilateImg;
}
void MainWindow::on_ThreshButton_clicked()
{
Mat* temp2 = &mid_mat;
if((*temp2).empty()){
QMessageBox::warning(nullptr, "警告", "请选择图片!!!");
return ;
}
if(!((*temp2).type()==CV_8UC1)){
QMessageBox::warning(nullptr, "警告", "请先将图片灰度化");
return ;
}
Mat bin_Img;
cv::adaptiveThreshold(*temp2, bin_Img, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 5, 2);
QImage temp1 = MatToImage(bin_Img);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = bin_Img;
}
void MainWindow::on_CannyDetectButton_clicked()
{
Mat* temp2 = &mid_mat;
if((*temp2).empty()){
QMessageBox::warning(nullptr, "警告", "请选择图片!!!");
return ;
}
if(!((*temp2).type()==CV_8UC1)){
QMessageBox::warning(nullptr, "警告", "请先将图片灰度化");
return ;
}
Mat cannyImg;
cv::Canny(*temp2, cannyImg, 100, 200, 3, false);
QImage temp1 = MatToImage(cannyImg);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = cannyImg;
}
ONNXClassifier::ONNXClassifier(const std::string& model_path, cv::Size _input_size) :default_mean(0.485, 0.456, 0.406),
default_std(0.229, 0.224, 0.225), input_size(_input_size)
{
net = cv::dnn::readNet(model_path);
net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
}
void ONNXClassifier::preprocess_input(Mat& image){
image.convertTo(image, CV_32F, 1.0/255.0);
cv::subtract(image, default_mean, image);
cv::divide(image, default_std, image);
}
void ONNXClassifier::Classifier(const cv::Mat& input_image, std::string& out_name, double& confidence){
out_name.clear();
cv::Mat image = input_image.clone();
preprocess_input(image);
cv::Mat input_blob = cv::dnn::blobFromImage(image, 1.0, input_size, cv::Scalar(0,0,0), true);
net.setInput(input_blob);
const std::vector<cv::String>& out_names = net.getUnconnectedOutLayersNames();
cv::Mat out_tensor = net.forward(out_names[0]);
cv::Point classNumber;
double classProb;
cv::minMaxLoc(out_tensor, NULL, &classProb, NULL, &classNumber);
confidence = classProb;
out_name = m_labels[classNumber.x];
}
void MainWindow::on_ClassifierButton_clicked()
{
Mat drawImg = mid_mat.clone();
String* using_model = &m_model;
if(drawImg.empty()){
QMessageBox::warning(nullptr, "警告", "请选择图片!!!");
return ;
}
if(using_model->empty()){
QMessageBox::warning(nullptr, "警告", "请选择模型!!!");
return ;
}
Size input_size(300, 300);
ONNXClassifier classifier(*using_model, input_size);
string result;
double confidence = 0;
classifier.Classifier(drawImg, result, confidence);
putText(drawImg, result, Point(20, 20), FONT_HERSHEY_SIMPLEX, 1.0, Scalar(0, 0, 255), 2, 8);
QImage temp1 = MatToImage(drawImg);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = drawImg;
}
void MainWindow::on_ModelButton_clicked()
{
modelPath = QFileDialog::getOpenFileName(nullptr, "选择文件", QDir::homePath(), "*.onnx *.weights");
QByteArray ba;
ba.append(modelPath);
m_model = modelPath.toStdString();
QMessageBox::information(nullptr, "提示", "模型加载成功");
}
void MainWindow::on_ObjPushButton_clicked()
{
String* yoloModel = &m_model;
Mat detectImg = mid_mat.clone();
if(detectImg.empty()){
QMessageBox::warning(nullptr, "警告", "请选择图片!!!");
return ;
}
if(yoloModel->empty()){
QMessageBox::warning(nullptr, "警告", "请选择模型!!!");
return ;
}
YOLOV3 yolo;
yolo.InitModel(*yoloModel);
yolo.detectImg(detectImg);
//转换图片类型
QImage temp1 = MatToImage(detectImg);
pic->setPixmap(QPixmap::fromImage(temp1));
ui->ViewImageScrollArea->setWidget(pic);
mid_mat = detectImg;
}
yolov3.cpp
#include "yolov3.h"
RNG rng(12345);
void YOLOV3::InitModel(string weightFile)
{
string configPath = "D:\\Projects\\QtProjects\\GithubProject\\models\\yolov3\\yolov3.cfg";
this->net = cv::dnn::readNetFromDarknet(configPath, weightFile);
net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
}
void YOLOV3::detectImg(Mat &img)
{
cv::dnn::blobFromImage(img, blob, 1/255.0, Size(this->inWidth, this->inHeight), Scalar::all(0), true, false);
net.setInput(blob);
net.forward(outs, net.getUnconnectedOutLayersNames());
for(size_t i=0; i<outs.size();i++)
{
float* pdata = (float*)outs[i].data;
for(int j=0;j<outs[i].rows;j++, pdata += outs[i].cols)
{
Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
Point classId;
double confidence;
minMaxLoc(scores, 0, &confidence, 0, &classId);
if(confidence>this->confThreshold)
{
int centerX = (int)(pdata[0]*img.cols);
int centerY = (int)(pdata[1]*img.rows);
int width = (int)(pdata[2]*img.cols);
int height = (int)(pdata[3]*img.rows);
int left = centerX - width / 2;
int top = centerY - height / 2;
classids.push_back(classId.x);
confidences.push_back(confidence);
boxes.push_back(Rect(left, top, width, height));
}
}
}
dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, this->indexes);
for(size_t i=0;i<indexes.size();i++)
{
int idx = indexes[i];
Rect box = boxes[idx];
this->drawImg(classids[idx], confidences[idx], box.x, box.y, box.x+box.width, box.y+box.height, img);
}
}
void YOLOV3::drawImg(int classId, float confidence, int left, int top, int right, int bottom, Mat &img)
{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
rectangle(img, Point(left, top), Point(right, bottom), color, 2);
string label = format("%.2f", confidence);
label = this->classes[classId] + ":" + label;
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, color, 2, 8);
}
边栏推荐
- I2C subsystem (II): I3C spec
- TCP 三次握手和四次挥手机制,TCP为什么要三次握手和四次挥手,TCP 连接建立失败处理机制
- 45 lectures on MySQL [index]
- Tensorflow to pytorch notes; tf. gather_ Nd (x, y) to pytorch
- I2C 子系统(一):I2C spec
- [principles of multithreading and high concurrency: 1_cpu multi-level cache model]
- Spark on yarn资源优化思路笔记
- Introduction to cron expression
- [shutter] monitor the transparency gradient of the scrolling action control component (remove the blank of the top status bar | frame layout component | transparency component | monitor the scrolling
- About HTTP cache control
猜你喜欢

Kubernetes family container housekeeper pod online Q & A?

Super easy to use logzero

I2C 子系統(四):I2C debug

Add automatic model generation function to hade
![[shutter] monitor the transparency gradient of the scrolling action control component (remove the blank of the top status bar | frame layout component | transparency component | monitor the scrolling](/img/c3/b9a614001f80345a5c1cb3c68ab27c.jpg)
[shutter] monitor the transparency gradient of the scrolling action control component (remove the blank of the top status bar | frame layout component | transparency component | monitor the scrolling

用docker 连接mysql的过程

一文带你了解 ZigBee

I2C subsystem (I): I2C spec

Check log4j problems using stain analysis

Sous - système I2C (IV): débogage I2C
随机推荐
Notifydatasetchanged not applicable to recyclerview - notifydatasetchanged not working on recyclerview
open file in 'w' mode: IOError: [Errno 2] No such file or directory
Pytest (6) -fixture (Firmware)
Kubernetes family container housekeeper pod online Q & A?
How to select the minimum and maximum values of columns in the data table- How to select min and max values of a column in a datatable?
The base value is too large (the error is marked as "08") [duplicate] - value too great for base (error token is'08') [duplicate]
Super easy to use logzero
当lambda没有输入时,是何含义?
Source code analysis | layout file loading process
Process the dataset and use labelencoder to convert all IDs to start from 0
Two dimensional format array format index subscript continuity problem leads to return JSON format problem
Concrete CMS vulnerability
敏捷认证(Professional Scrum Master)模拟练习题-2
tensorflow转pytorch笔记;tf.gather_nd(x,y)转pytorch
C语言初阶-指针详解-庖丁解牛篇
你真的懂继电器吗?
内存泄漏工具VLD安装及使用
Deep learning: multi-layer perceptron and XOR problem (pytoch Implementation)
I2C subsystem (III): I2C driver
MySql实战45讲【全局锁和表锁】