当前位置:网站首页>A collection of classic papers on convolutional neural networks (deep learning classification)
A collection of classic papers on convolutional neural networks (deep learning classification)
2022-07-04 14:29:00 【Chen Hemeng】
Convolutional neural network classic papers collection
For the convenience of writing in-depth learning classification network overview , Now I will sort out the classic papers in recent years . Most of the article time is for reference arXiv The sharing time shall prevail , A small part is the publication date of the journal .
Download address
CSDN:https://download.csdn.net/download/weixin_43312117/85878577
Baidu cloud : link : https://pan.baidu.com/s/1spSZNYlJwvnM1sCD4W8qog?pwd=dqeb
Extraction code : dqeb
1998_LeNet
title :Gradient-Based Learning Applied to Document Recognition
author :Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner
2012_AlexNet
title :ImageNet Classification with Deep Convolutional Neural Networks
author :Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton
2013_11_ZfNet
title :Visualizing and Understanding Convolutional Networks
author :Matthew D. Zeiler,Rob Fergus
2014_GoogLeNet
2014_09_GoogLeNet_V1
title :Going deeper with convolutions
author :Christian Szegedy,Wei Liu,Yangqing Jia,Pierre Sermanet,Scott Reed,Dragomir Anguelov,Dumitru Erhan,Vincent Vanhoucke,Andrew Rabinovich
2015_03_GoogLeNet_V2
title :Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
author :Sergey Ioffe,Christian Szegedy
2015_12_GoogLeNet_V3
title :Rethinking the Inception Architecture for Computer Vision
author :Christian Szegedy,Vincent Vanhoucke,Sergey Ioffe,Jonathon Shlens
2016_08_GoogLeNet_V4
title :Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
author :Christian Szegedy,Sergey Ioffe,Vincent Vanhoucke
2015_04_VGG
subject :VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION
author :Karen Simonyan,Andrew Zisserman
2015_12_ResNet
subject :Deep Residual Learning for Image Recognition
author :Kaiming He,Xiangyu Zhang,Shaoqing Ren,Jian Sun
2016_11_SqueezeNet
title :SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE
author :Forrest N. Iandola,Song Han,Matthew W.Moskewicz,Khalid Ashraf,William J. Dally,Kurt Keutzer
Attention
2017_SENet
title :Squeeze-and-Excitation Networks
author :Jie Hu,Li Shen,Samuel Albanie,Gang Sun,Enhua Wu
( Officially published in 2019 year 5 month )
2018_CBAM
title :CBAM: Convolutional Block Attention Module
author :Sanghyun Woo,Jongchan Park,Joon-Young Lee,In So Kweon
2017_MobileNet
2017_04_MobileNetV1
title :MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
author :Andrew G. Howard,Menglong Zhu,Bo Chen,Dmitry Kalenichenko,Weijun Wang,Tobias Weyand,Marco Andreetto,Hartwig Adam
2019_03_MobileNetV2
title :MobileNetV2: Inverted Residuals and Linear Bottlenecks
author :Mark Sandler,Andrew Howard,Menglong Zhu,Andrey Zhmoginov,Liang-Chieh Chen
2019_11_MobileNetV3
Searching for MobileNetV3
Andrew Howard,Mark Sandler,Grace Chu,Liang-Chieh Chen,Bo Chen,Mingxing Tan,Weijun Wang,Yukun Zhu,Ruoming Pang,Vijay Vasudevan,Quoc V. Le,Hartwig Adam
2017_08_DPNet
title :Dual Path Networks
author :Yunpeng Chen,Jianan Li,Huaxin Xiao,Xiaojie Jin,Shuicheng Yan,Jiashi Feng
2017_11_CapsNet
title :Dynamic Routing Between Capsules
author :Sara Sabour,Nicholas Frosst
2017_ShuffleNet
2017_12_ShuffleNetV1
title :ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
author :Xiangyu Zhang,Xinyu Zhou,Mengxiao Lin,Jian Sun
2018_04_ShuffleNetV2
title :ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
author :Ningning Ma,Xiangyu Zhang,Hai-Tao Zheng,Jian Sun
2018_01_DenseNet
title :Densely Connected Convolutional Networks
author :Gao Huang,Zhuang Liu,Laurens van der Maaten,Kilian Q. Weinberger
2019_11_EfficientNet
title :EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
author :Mingxing Tan,Quoc V. Le
2021_Transformer
2021_06_ViT
title :AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
author :Alexey Dosovitskiy,Lucas Beyer,Alexander Kolesnikov,Dirk Weissenborn,Xiaohua Zhai,Thomas Unterthiner,Mostafa Dehghani,Matthias Minderer,Georg Heigold,Sylvain Gelly,Jakob Uszkoreit,Neil Houlsby
2021_08_Swin Transformer
title :Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu,Yutong Lin,Yue Cao,Han Hu,Yixuan Wei,Zheng Zhan,Stephen Lin,Baining Guo
2021_08_PVT
title :Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
author :Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu1, Ping Luo, Ling Shao
2022_03_ConvNet
title :A ConvNet for the 2020s
author :Zhuang Liu,Hanzi Mao,Chao-Yuan Wu,Christoph Feichtenhofer,Trevor Darrell,Saining Xie
Modify the record
- 2022 year 07 month 03 Japan 12:09:46, Preliminary completion , It can be continuously updated and has the opportunity to add the core description of relevant papers .
边栏推荐
- Chapter 16 string localization and message Dictionary (2)
- opencv3.2 和opencv2.4安装
- Count the running time of PHP program and set the maximum running time of PHP
- Chapter 17 process memory
- 架构方面的进步
- R language ggplot2 visualization: gganimate package creates dynamic line graph animation (GIF) and uses transition_ The reveal function displays data step by step along a given dimension in the animat
- Solutions to the problems of miui12.5 red rice k20pro using Au or povo2
- 实时数据仓库
- 聊聊保证线程安全的 10 个小技巧
- R语言使用dplyr包的mutate函数对指定数据列进行标准化处理(使用mean函数和sd函数)并基于分组变量计算标准化后的目标变量的分组均值
猜你喜欢

Compile oglpg-9th-edition source code with clion
![Supprimer les lettres dupliquées [avidité + pile monotone (maintenir la séquence monotone avec un tableau + Len)]](/img/af/a1dcba6f45eb4ccc668cd04a662e9c.png)
Supprimer les lettres dupliquées [avidité + pile monotone (maintenir la séquence monotone avec un tableau + Len)]

Excel quickly merges multiple rows of data

gin集成支付宝支付

Why should Base64 encoding be used for image transmission

一文概览2D人体姿态估计

Digi restarts XBee Pro S2C production. Some differences need to be noted

【MySQL从入门到精通】【高级篇】(五)MySQL的SQL语句执行流程

Codeforce:c. sum of substrings

按照功能对Boost库进行分类
随机推荐
R language ggplot2 visualization: gganimate package creates animated graph (GIF) and uses anim_ The save function saves the GIF visual animation
R language ggplot2 visualization: gganimate package creates dynamic line graph animation (GIF) and uses transition_ The reveal function displays data step by step along a given dimension in the animat
92.(cesium篇)cesium楼栋分层
R language uses the mutation function of dplyr package to standardize the specified data column (using mean function and SD function), and calculates the grouping mean of the standardized target varia
2022 game going to sea practical release strategy
电商系统中红包活动设计
R语言dplyr包summarise_if函数计算dataframe数据中所有数值数据列的均值和中位数、基于条件进行数据汇总分析(Summarize all Numeric Variables)
Ml: introduction, principle, use method and detailed introduction of classic cases of snap value
【MySQL从入门到精通】【高级篇】(五)MySQL的SQL语句执行流程
流行框架:Glide的使用
leetcode:6109. 知道秘密的人数【dp的定义】
聊聊保证线程安全的 10 个小技巧
Map of mL: Based on Boston house price regression prediction data set, an interpretable case of xgboost model using map value
迅为IMX6Q开发板QT系统移植tinyplay
R语言使用epiDisplay包的dotplot函数通过点图的形式可视化不同区间数据点的频率、使用by参数指定分组参数可视化不同分组的点图分布
Oppo find N2 product form first exposure: supplement all short boards
Incremental ternary subsequence [greedy training]
ML之shap:基于boston波士顿房价回归预测数据集利用Shap值对LiR线性回归模型实现可解释性案例
R语言ggplot2可视化:gganimate包创建动态折线图动画(gif)、使用transition_reveal函数在动画中沿给定维度逐步显示数据
LifeCycle