当前位置:网站首页>A collection of classic papers on convolutional neural networks (deep learning classification)
A collection of classic papers on convolutional neural networks (deep learning classification)
2022-07-04 14:29:00 【Chen Hemeng】
Convolutional neural network classic papers collection
For the convenience of writing in-depth learning classification network overview , Now I will sort out the classic papers in recent years . Most of the article time is for reference arXiv The sharing time shall prevail , A small part is the publication date of the journal .
Download address
CSDN:https://download.csdn.net/download/weixin_43312117/85878577
Baidu cloud : link : https://pan.baidu.com/s/1spSZNYlJwvnM1sCD4W8qog?pwd=dqeb
Extraction code : dqeb
1998_LeNet
title :Gradient-Based Learning Applied to Document Recognition
author :Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner
2012_AlexNet
title :ImageNet Classification with Deep Convolutional Neural Networks
author :Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton
2013_11_ZfNet
title :Visualizing and Understanding Convolutional Networks
author :Matthew D. Zeiler,Rob Fergus
2014_GoogLeNet
2014_09_GoogLeNet_V1
title :Going deeper with convolutions
author :Christian Szegedy,Wei Liu,Yangqing Jia,Pierre Sermanet,Scott Reed,Dragomir Anguelov,Dumitru Erhan,Vincent Vanhoucke,Andrew Rabinovich
2015_03_GoogLeNet_V2
title :Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
author :Sergey Ioffe,Christian Szegedy
2015_12_GoogLeNet_V3
title :Rethinking the Inception Architecture for Computer Vision
author :Christian Szegedy,Vincent Vanhoucke,Sergey Ioffe,Jonathon Shlens
2016_08_GoogLeNet_V4
title :Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
author :Christian Szegedy,Sergey Ioffe,Vincent Vanhoucke
2015_04_VGG
subject :VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION
author :Karen Simonyan,Andrew Zisserman
2015_12_ResNet
subject :Deep Residual Learning for Image Recognition
author :Kaiming He,Xiangyu Zhang,Shaoqing Ren,Jian Sun
2016_11_SqueezeNet
title :SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE
author :Forrest N. Iandola,Song Han,Matthew W.Moskewicz,Khalid Ashraf,William J. Dally,Kurt Keutzer
Attention
2017_SENet
title :Squeeze-and-Excitation Networks
author :Jie Hu,Li Shen,Samuel Albanie,Gang Sun,Enhua Wu
( Officially published in 2019 year 5 month )
2018_CBAM
title :CBAM: Convolutional Block Attention Module
author :Sanghyun Woo,Jongchan Park,Joon-Young Lee,In So Kweon
2017_MobileNet
2017_04_MobileNetV1
title :MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
author :Andrew G. Howard,Menglong Zhu,Bo Chen,Dmitry Kalenichenko,Weijun Wang,Tobias Weyand,Marco Andreetto,Hartwig Adam
2019_03_MobileNetV2
title :MobileNetV2: Inverted Residuals and Linear Bottlenecks
author :Mark Sandler,Andrew Howard,Menglong Zhu,Andrey Zhmoginov,Liang-Chieh Chen
2019_11_MobileNetV3
Searching for MobileNetV3
Andrew Howard,Mark Sandler,Grace Chu,Liang-Chieh Chen,Bo Chen,Mingxing Tan,Weijun Wang,Yukun Zhu,Ruoming Pang,Vijay Vasudevan,Quoc V. Le,Hartwig Adam
2017_08_DPNet
title :Dual Path Networks
author :Yunpeng Chen,Jianan Li,Huaxin Xiao,Xiaojie Jin,Shuicheng Yan,Jiashi Feng
2017_11_CapsNet
title :Dynamic Routing Between Capsules
author :Sara Sabour,Nicholas Frosst
2017_ShuffleNet
2017_12_ShuffleNetV1
title :ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
author :Xiangyu Zhang,Xinyu Zhou,Mengxiao Lin,Jian Sun
2018_04_ShuffleNetV2
title :ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
author :Ningning Ma,Xiangyu Zhang,Hai-Tao Zheng,Jian Sun
2018_01_DenseNet
title :Densely Connected Convolutional Networks
author :Gao Huang,Zhuang Liu,Laurens van der Maaten,Kilian Q. Weinberger
2019_11_EfficientNet
title :EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
author :Mingxing Tan,Quoc V. Le
2021_Transformer
2021_06_ViT
title :AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
author :Alexey Dosovitskiy,Lucas Beyer,Alexander Kolesnikov,Dirk Weissenborn,Xiaohua Zhai,Thomas Unterthiner,Mostafa Dehghani,Matthias Minderer,Georg Heigold,Sylvain Gelly,Jakob Uszkoreit,Neil Houlsby
2021_08_Swin Transformer
title :Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu,Yutong Lin,Yue Cao,Han Hu,Yixuan Wei,Zheng Zhan,Stephen Lin,Baining Guo
2021_08_PVT
title :Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
author :Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu1, Ping Luo, Ling Shao
2022_03_ConvNet
title :A ConvNet for the 2020s
author :Zhuang Liu,Hanzi Mao,Chao-Yuan Wu,Christoph Feichtenhofer,Trevor Darrell,Saining Xie
Modify the record
- 2022 year 07 month 03 Japan 12:09:46, Preliminary completion , It can be continuously updated and has the opportunity to add the core description of relevant papers .
边栏推荐
- R language uses follow up of epidisplay package The plot function visualizes the longitudinal follow-up map of multiple ID (case) monitoring indicators, and uses stress The col parameter specifies the
- 游戏出海,全球化运营
- STM32F1与STM32CubeIDE编程实例-MAX7219驱动8位7段数码管(基于GPIO)
- 關於miui12.5 紅米k20pro用au或者povo2出現問題的解决辦法
- Nowcoder reverse linked list
- Leetcode t47: full arrangement II
- leetcode:6110. The number of incremental paths in the grid graph [DFS + cache]
- 测试流程整理(2)
- Map of mL: Based on Boston house price regression prediction data set, an interpretable case is realized by using the map value to the LIR linear regression model
- Xcode 异常图片导致ipa包增大问题
猜你喜欢
聊聊保证线程安全的 10 个小技巧
递增的三元子序列[贪心训练]
基于51单片机的超声波测距仪
Digi重启XBee-Pro S2C生产,有些差别需要注意
92.(cesium篇)cesium楼栋分层
Stm32f1 and stm32subeide programming example -max7219 drives 8-bit 7-segment nixie tube (based on GPIO)
迅为IMX6Q开发板QT系统移植tinyplay
第十七章 进程内存
(1)性能调优的标准和做好调优的正确姿势-有性能问题,上HeapDump性能社区!
Use of tiledlayout function in MATLAB
随机推荐
Leetcode t47: full arrangement II
Use of tiledlayout function in MATLAB
尊重他人的行为
【算法leetcode】面试题 04.03. 特定深度节点链表(多语言实现)
leetcode:6110. 网格图中递增路径的数目【dfs + cache】
Vscode common plug-ins summary
WT588F02B-8S(C006_03)单芯片语音ic方案为智能门铃设计降本增效赋能
【信息检索】链接分析
NowCoder 反转链表
Intelligence d'affaires bi analyse financière, analyse financière au sens étroit et analyse financière au sens large sont - ils différents?
电商系统中红包活动设计
海外游戏代投需要注意的
R language ggplot2 visualization: gganimate package creates animated graph (GIF) and uses anim_ The save function saves the GIF visual animation
Supprimer les lettres dupliquées [avidité + pile monotone (maintenir la séquence monotone avec un tableau + Len)]
The game goes to sea and operates globally
Progress in architecture
按照功能对Boost库进行分类
What is the difference between Bi financial analysis in a narrow sense and financial analysis in a broad sense?
R语言使用epiDisplay包的followup.plot函数可视化多个ID(病例)监测指标的纵向随访图、使用stress.col参数指定强调线的id子集的颜色(色彩)
R language ggplot2 visualization: gganimate package creates dynamic line graph animation (GIF) and uses transition_ The reveal function displays data step by step along a given dimension in the animat