当前位置:网站首页>pytorch练习小项目
pytorch练习小项目
2022-07-03 06:15:00 【fksfdh】
config.py
class Hyperparameter:
# ################################################
# data
# ################################################
device = 'cpu'
trainset_path = './data/train.txt'
testset_path = './data/test.txt'
seed = 1234
# ################################################
# model
# ################################################
in_features = 4
out_dim = 2
layer_list = [in_features,64,128,64,out_dim]
# ################################################
# train
# ################################################
init_lr = 1e-3
batch_size = 64
epochs = 100
verbose_step = 10
save_step = 500
HP = Hyperparameter()
dataset_banknote.py
from torch.utils.data import Dataset,DataLoader
import numpy as np
import torch
from config import HP
class BanknoteDataset(Dataset):
def __init__(self,dataset_path):
self.dataset = np.loadtxt(dataset_path,delimiter=',')
def __getitem__(self, idx):
item = self.dataset[idx]
x,y = item[:HP.in_features],item[HP.in_features:]
return torch.Tensor(x).float().to(HP.device),torch.Tensor(y).squeeze().long().to(HP.device)
def __len__(self):
return self.dataset.shape[0]
model.py
from torch import nn
import torch.nn.functional as F
from config import HP
import torch
class BanknoteClassificationModel(nn.Module):
def __init__(self):
super(BanknoteClassificationModel, self).__init__()
self.linear_layer = nn.ModuleList([
nn.Linear(in_features=in_dim,out_features=out_dim)
for in_dim,out_dim in zip(HP.layer_list[:-1],HP.layer_list[1:])
])
def forward(self,input_x):
for layer in self.linear_layer:
input_x = layer(input_x)
input_x = F.relu(input_x)
return input_x
if __name__ == '__main__':
data = torch.randn((64,4))
model = BanknoteClassificationModel()
res = model(data)
print(res.size())
trainer.py
import random
import os
from argparse import ArgumentParser
import numpy as np
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
from config import HP
from model import BanknoteClassificationModel
from dataset_banknote import BanknoteDataset
torch.manual_seed(HP.seed)
torch.cuda.manual_seed(HP.seed)
random.seed(HP.seed)
np.random.seed(HP.seed)
def evaluate(model_,test_loader,crit):
model_.eval()
sum_loss = 0.
with torch.no_grad():
for batch in test_loader:
x,y = batch
pred = model_(x)
loss = crit(pred,y)
sum_loss += loss
model_.train()
return sum_loss / len(test_loader)
def save_checkpoint(model_,epoch,optm,checkpoint_path):
save_dict = {
'model_state_dict':model_.state_dict(),
'optimizer_state_dict': optm.state_dict(),
'epoch':epoch
}
torch.save(save_dict,checkpoint_path)
def train():
parser = ArgumentParser(description="Model Training")
parser.add_argument(
'--c',
default=None,
type=str,
help='train from scratch or resume training'
)
args = parser.parse_args()
#data
train_set = BanknoteDataset(HP.trainset_path)
train_loader = DataLoader(train_set,batch_size=HP.batch_size,shuffle=True,drop_last=True)
test_set = BanknoteDataset(HP.testset_path)
test_loader = DataLoader(test_set,batch_size=HP.batch_size,shuffle=True,drop_last=True)
#model
model = BanknoteClassificationModel()
#loss
criterion = nn.CrossEntropyLoss()
#optm
optm = optim.Adam(model.parameters(),lr=HP.init_lr)
start_epoch,step = 0,0
if args.c:
checkpoint = torch.load(args.c)
model.load_state_dict(checkpoint["model_state_dict"])
optm.load_state_dict(checkpoint["optimizer_state_dict"])
start_epoch = checkpoint["epoch"]
print("Resume from %s" % args.c)
else:
print("Training from scratch !")
model.train()
for epoch in range(start_epoch,HP.epochs):
print("Start_Epoch:%d,Steps:%d"%(epoch,len(train_loader)/HP.batch_size))
for batch in train_loader:
x ,y = batch
optm.zero_grad()
pred = model(x)
loss = criterion(pred,y)
loss.backward()
optm.step()
if not step % HP.verbose_step:
eval_loss = evaluate(model,test_loader,criterion)
if not step % HP.save_step:
model_path = "model_%d_%d.pth" %(epoch,step)
save_checkpoint(model,epoch,optm,os.path.join("model_save",model_path))
step += 1
print("Epoch:[%d/%d],step:%d,train_loss:%.5f,test_loss:%.5f"%(epoch,HP.epochs,step,loss.item(),eval_loss))
if __name__ == '__main__':
train()
边栏推荐
- POI dealing with Excel learning
- Oauth2.0 - user defined mode authorization - SMS verification code login
- IE browser flash back, automatically open edge browser
- Kubesphere - build Nacos cluster
- Creating postgre enterprise database by ArcGIS
- . Net program configuration file operation (INI, CFG, config)
- Kubernetes notes (V) configuration management
- Zhiniu stock project -- 04
- Simple solution of small up main lottery in station B
- Detailed explanation of findloadedclass
猜你喜欢

Time format record

SQL实现将多行记录合并成一行

tabbar的设置

Bio, NiO, AIO details

Clickhouse learning notes (I): Clickhouse installation, data type, table engine, SQL operation

Clickhouse learning notes (2): execution plan, table creation optimization, syntax optimization rules, query optimization, data consistency

.NET程序配置文件操作(ini,cfg,config)

Scripy learning

How to scan when Canon c3120l is a network shared printer

Oauth2.0 - use database to store client information and authorization code
随机推荐
Jedis source code analysis (II): jediscluster module source code analysis
Simple understanding of ThreadLocal
表达式的动态解析和计算,Flee用起来真香
Jedis source code analysis (I): jedis introduction, jedis module source code analysis
Install VM tools
Detailed explanation of findloadedclass
Solve the problem that Anaconda environment cannot be accessed in PowerShell
arcgis创建postgre企业级数据库
致即将毕业大学生的一封信
Leetcode solution - 02 Add Two Numbers
Cesium entity(entities) 实体删除方法
JMeter linked database
phpstudy设置项目可以由局域网的其他电脑可以访问
Common interview questions
Es remote cluster configuration and cross cluster search
In depth learning
Scripy learning
Understand the first prediction stage of yolov1
Support vector machine for machine learning
.NET程序配置文件操作(ini,cfg,config)