当前位置:网站首页>Notes on algebra 10.1: understanding of symmetric polynomials and derivation of cubic resolvents

Notes on algebra 10.1: understanding of symmetric polynomials and derivation of cubic resolvents

2022-06-22 07:06:00 zorchp

Write it at the front

In the previous study, I naively thought that the solution of elementary symmetric polynomial representation by symmetric polynomial is to directly apply the formula , No deep understanding Fundamental theorem of symmetric polynomials The derivation process of .

The direct use doctrine can solve some problems , But there will still be some small problems that cannot be solved , Today, I picked up the advanced algebra textbook and read it again , Only then can we truly master the representation of elementary symmetric polynomials of symmetric polynomials , And the cubic resolvent used to calculate and deduce the quartic equation ( Previous blog Have adopted the CAS Calculation , Convenient but I don't know why , Anguish )

The teacher explained something in class , But some jumps , You still have to savor it carefully to realize the truth .

Symmetric polynomials

n n n Multivariate polynomial f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn), If for any i , j ,   ( 1 ≤ i < j ≤ n ) i,j,\ (1\le i<j\le n) i,j, (1i<jn), There are
f ( x 1 , ⋯   , x i , ⋯   , x j , ⋯   , x n ) = f ( x 1 , ⋯   , x j , ⋯   , x i , ⋯   , x n ) . f(x_1,\cdots,x_i,\cdots,x_j,\cdots,x_n)=f(x_1,\cdots,x_j,\cdots,x_i,\cdots,x_n). f(x1,,xi,,xj,,xn)=f(x1,,xj,,xi,,xn).
Then the polynomial is called a symmetric polynomial .

Fundamental theorem of symmetric polynomials

For any one n n n Symmetric polynomials of variables f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) There is one. n n n Multivariate polynomial φ ( y 1 , y 2 , ⋯   , y n ) \varphi(y_1,y_2,\cdots,y_n) φ(y1,y2,,yn) bring
f ( x 1 , x 2 , ⋯   , x n ) = φ ( σ 1 , σ 2 , ⋯   , σ n ) . f(x_1,x_2,\cdots,x_n)=\varphi(\sigma_1,\sigma_2,\cdots,\sigma_n). f(x1,x2,,xn)=φ(σ1,σ2,,σn).
among σ i \sigma_i σi Is an elementary symmetric polynomial , As follows
{ σ 1 = x 1 + x 2 + ⋯ + x n , σ 2 = x 1 x 2 + x 1 x 3 + ⋯ + x n − 1 x n , ⋯ σ n = x 1 x 2 ⋯ x n . \begin{cases} \sigma_1=x_1+x_2+\cdots+x_n,\\ \sigma_2=x_1x_2+x_1x_3+\cdots+x_{n-1}x_n,\\ \cdots\\ \sigma_n=x_1x_2\cdots x_n. \end{cases} σ1=x1+x2++xn,σ2=x1x2+x1x3++xn1xn,σn=x1x2xn.

prove ( A method of expressing symmetric polynomials as polynomials of elementary symmetric polynomials )

set up f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn)( Arranged in dictionary order ) The first item is
a x 1 l 1 x 2 l 2 ⋯ x n l n , a ≠ 0. (1) ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n},\quad a\ne0.\tag{1} ax1l1x2l2xnln,a=0.(1)
( 1 ) (1) (1) The formula is f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) First item of , There must be l i ≥ l 2 ≥ ⋯ ≥ l n ≥ 0 ) l_i\ge l_2\ge\cdots\ge l_n\ge0) lil2ln0).

Otherwise , Equipped with l i < l i + 1 l_i<l_{i+1} li<li+1, from f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) Is a symmetric polynomial , therefore f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) It contains the following two items at the same time
a x 1 l 1 x 2 l 2 ⋯ x n l n , a x 1 l 1 ⋯ x i l i + 1 x i + 1 l i ⋯ x n l n , ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n},\quad ax_1^{l_1}\cdots x_i^{l_{i+1}}x_{i+1}^{l_i}\cdots x_n^{l_n}, ax1l1x2l2xnln,ax1l1xili+1xi+1lixnln,
In dictionary order , The latter should precede the former , And the former is the first contradiction .

Make symmetric polynomials
φ 1 = a σ 1 l 1 − l 2 σ 2 l 2 − l 3 ⋯ σ n l n (2) \varphi_1=a\sigma_1^{l_1-l_2}\sigma_2^{l_2-l_3}\cdots \sigma_n^{l_n}\tag{2} φ1=aσ1l1l2σ2l2l3σnln(2)

because σ 1 , σ 2 , ⋯   , σ n \sigma_1,\sigma_2,\cdots,\sigma_n σ1,σ2,,σn The first items are x 1 , x 1 x 2 , ⋯   , x 1 x 2 ⋯ x n x_1,x_1x_2,\cdots,x_1x_2\cdots x_n x1,x1x2,,x1x2xn, So the right end of the above formula is just expanded to get
φ 1 = a x 1 l 1 x 2 l 2 ⋯ x n l n , \varphi_1=ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n}, φ1=ax1l1x2l2xnln,
This also explains why Item by item .

therefore , φ 1 \varphi_1 φ1 And f f f Have the same first item , After subtracting the two, we can just get a symmetric polynomial of smaller degree , namely
f 1 ( x 1 , x 2 , ⋯   , x n ) = f − φ 1 f_1(x_1,x_2,\cdots,x_n)=f-\varphi_1 f1(x1,x2,,xn)=fφ1
Repeat this , A series of symmetric polynomials with decreasing degree can be obtained , namely
f , f 1 = f − φ 1 , f 2 = f 1 − φ 2 , ⋯   . (3) f,f_1=f-\varphi_1,f_2=f_1-\varphi_2,\cdots.\tag{3} f,f1=fφ1,f2=f1φ2,.(3)
set up b x 1 p 1 x 2 p 2 ⋯ x n p n bx_1^{p_1}x_2^{p_2}\cdots x_n^{p_n} bx1p1x2p2xnpn by ( 3 ) (3) (3) The first term of a symmetric polynomial in , ( 1 ) (1) (1) Before ( 3 ) (3) (3), It's about meeting
l 1 ≥ p 1 ≥ p 2 ≥ ⋯ ≥ p n ≥ 0 , l_1\ge p_1\ge p_2\ge\cdots\ge p_n\ge0, l1p1p2pn0,
obviously , Suitable for the above conditions n n n Tuples ( p 1 , ⋯   , p n ) (p_1,\cdots,p_n) (p1,,pn) There are only a limited number of , therefore ( 3 ) (3) (3) Only a finite number of symmetric polynomials are not zero , There is a positive integer h h h bring f h = 0 f_h=0 fh=0 establish , That means
f ( x 1 , x 2 , ⋯   , x n ) = φ 1 + φ 2 + ⋯ + φ h , f(x_1,x_2,\cdots,x_n)=\varphi_1+\varphi_2+\cdots+\varphi_h, f(x1,x2,,xn)=φ1+φ2++φh,
namely f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) The sum of some monomials that can be expressed as elementary symmetric polynomials , That is, symmetric polynomials f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) It can be expressed in the form of polynomials of elementary symmetric polynomials .

The uniqueness is easily proved .

Above, we introduced the theorem of calculating the representation of symmetric polynomials , Here is a specific application .

  • It is difficult to remember the cubic resolvent of quartic equation directly , The derivation method is given here .

Calculate the cubic resolvent of the quartic equation

x 4 + b x 3 + c x 2 + d x + e = 0 , x^4+bx^3+cx^2+dx+e=0, x4+bx3+cx2+dx+e=0,

Cubic resolvent :
x 3 − c x 2 + ( b d − 4 e ) x − b 2 e + 4 c e − d 2 = 0. x^3-cx^2+(bd-4e)x-b^2e+4ce-d^2=0. x3cx2+(bd4e)xb2e+4ced2=0.


g ( x ) = ( x − β 1 ) ( x − β 2 ) ( x − β 3 ) = x 3 − ∑ i β i x 2 + ∑ i ≠ j β i β j x − ∏ i β i , g(x)=(x-\beta_1)(x-\beta_2)(x-\beta_3)=x^3-\sum_{i}\beta_ix^2+\sum_{i\ne j}\beta_i\beta_jx-\prod_i\beta_i, g(x)=(xβ1)(xβ2)(xβ3)=x3iβix2+i=jβiβjxiβi,

Just calculate the above
− ∑ i β i ,   ∑ i ≠ j β i β j , − ∏ i β i , -\sum_{i}\beta_i,\ \sum_{i\ne j}\beta_i\beta_j, -\prod_i\beta_i, iβi, i=jβiβj,iβi,

Here we will focus on The most difficult item to calculate , That is to say ∏ β i = β 1 β 2 β 3 \prod\beta_i=\beta_1\beta_2\beta_3 βi=β1β2β3, It can be expressed as
f ( α 1 , α 2 , α 3 , α 4 ) = ( α 1 α 2 + α 3 α 4 ) ( α 1 α 3 + α 2 α 4 ) ( α 1 α 4 + α 2 α 3 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=(\alpha_1\alpha_2+\alpha_3\alpha_4)(\alpha_1\alpha_3+\alpha_2\alpha_4)(\alpha_1\alpha_4+\alpha_2\alpha_3) f(α1,α2,α3,α4)=(α1α2+α3α4)(α1α3+α2α4)(α1α4+α2α3)
obviously , The quaternion polynomial above f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4) Is a symmetric polynomial , Next, consider how to use the polynomial form of elementary symmetric polynomials to express f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4). among , Elementary symmetric polynomials are expressed as follows ( By the way, the relationship between the root and the coefficient )
{ σ 1 = − b = ∑ i α i σ 2 = c = ∑ i ≠ j α i α j σ 3 = − d = ∑ i ≠ j , j ≠ k , k ≠ i α i α j α k σ 4 = e = ∏ i α i \begin{cases} \sigma_1=-b=\sum\limits_i\alpha_i\\ \sigma_2=c=\sum\limits_{i\ne j}\alpha_i\alpha_j\\ \sigma_3=-d=\sum\limits_{i\ne j,j\ne k,k\ne i}\alpha_i\alpha_j\alpha_k\\ \sigma_4=e=\prod\limits_i\alpha_i \end{cases} σ1=b=iαiσ2=c=i=jαiαjσ3=d=i=j,j=k,k=iαiαjαkσ4=e=iαi

First of all, we need to find f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4) First item of , It is not difficult to find that the first item is α 1 3 α 2 α 3 α 4 \alpha_1^3\alpha_2\alpha_3\alpha_4 α13α2α3α4, The corresponding quadruple is ( 3 , 1 , 1 , 1 ) (3,1,1,1) (3,1,1,1), So the first term of the corresponding elementary symmetric polynomial is σ 1 2 σ 4 \sigma_1^2\sigma_4 σ12σ4, In this case, you need to subtract the original polynomial from the first term , as follows
f 1 = f ( α 1 , α 2 , α 3 , α 4 ) − σ 1 2 σ 4 = − 2 ( α 1 2 α 2 2 α 3 α 4 + ⋯   ) + ⋯ \begin{aligned} f_1=f(\alpha_1,\alpha_2,\alpha_3,\alpha_4)-\sigma_1^2\sigma_4 &=-2(\alpha_1^2\alpha_2^2\alpha_3\alpha_4+\cdots)+\cdots \end{aligned} f1=f(α1,α2,α3,α4)σ12σ4=2(α12α22α3α4+)+
Now the new polynomial f 1 f_1 f1 The first item of becomes α 1 2 α 2 2 α 3 α 4 \alpha_1^2\alpha_2^2\alpha_3\alpha_4 α12α22α3α4, The corresponding quadruple is ( 2 , 2 , 1 , 1 ) (2,2,1,1) (2,2,1,1), Then the corresponding first item becomes σ 2 σ 4 \sigma_2\sigma_4 σ2σ4, Another step of subtraction :
f 2 = f 1 − σ 2 σ 4 = α 1 2 α 2 2 α 3 2 + ⋯ f_2 = f_1-\sigma_2\sigma_4=\alpha_1^2\alpha_2^2\alpha_3^2+\cdots f2=f1σ2σ4=α12α22α32+
f 2 f_2 f2 The corresponding quadruple is ( 2 , 2 , 2 , 0 ) (2,2,2,0) (2,2,2,0), So the first item here corresponds to σ 3 2 \sigma_3^2 σ32, So we can start using the undetermined coefficient method ∏ β i = β 1 β 2 β 3 \prod\beta_i=\beta_1\beta_2\beta_3 βi=β1β2β3 了 .
∏ β i = β 1 β 2 β 3 = σ 1 2 σ 4 + u σ 3 2 + v σ 2 σ 4 , \prod\beta_i=\beta_1\beta_2\beta_3=\sigma_1^2\sigma_4+u\sigma_3^2+v\sigma_2\sigma_4, βi=β1β2β3=σ12σ4+uσ32+vσ2σ4,
take α 1 = α 2 = α 3 = 1 , α 4 = 0 \alpha_1=\alpha_2=\alpha_3=1, \alpha_4=0 α1=α2=α3=1,α4=0, obtain
u = 1 , u=1, u=1,
take α i = 1 \alpha_i=1 αi=1, obtain
6 v = − 24 * v = − 4 , 6v=-24\Longrightarrow v=-4, 6v=24*v=4,

So we got
∏ β i = β 1 β 2 β 3 = σ 1 2 σ 4 + σ 3 2 − 4 σ 2 σ 4 , \prod\beta_i=\beta_1\beta_2\beta_3=\sigma_1^2\sigma_4+\sigma_3^2-4\sigma_2\sigma_4, βi=β1β2β3=σ12σ4+σ324σ2σ4,
Then, the relationship between the root and the coefficient is used for correspondence , You can get
∏ β i = β 1 β 2 β 3 = b 2 e + d 2 − 4 c e . \prod\beta_i=\beta_1\beta_2\beta_3=b^2e+d^2-4ce. βi=β1β2β3=b2e+d24ce.
When this is done , The remaining two coefficients can be calculated directly , The previous article mentioned . Here is a brief introduction .

Coefficient of the square term , β i \beta_i βi Just add it up
− ∑ i β i = − ∑ i ≠ j α i α j = − c , -\sum_{i}\beta_i=-\sum\limits_{i\ne j}\alpha_i\alpha_j=-c, iβi=i=jαiαj=c,
For the coefficient of the first-order term , The basic theorem of symmetric polynomials can also be used , as follows

set up
f ( β 1 , β 2 , β 3 ) = ∑ i ≠ j β i β j = β 1 β 2 + β 1 β 3 + β 2 β 3 , f(\beta_1,\beta_2,\beta_3)=\sum_{i\ne j}\beta_i\beta_j=\beta_1\beta_2+\beta_1\beta_3+\beta_2\beta_3, f(β1,β2,β3)=i=jβiβj=β1β2+β1β3+β2β3,
The first item is α 1 2 α 2 α 3 \alpha_1^2\alpha_2\alpha_3 α12α2α3, namely ( 2 , 1 , 1 , 0 ) (2,1,1,0) (2,1,1,0), The first term of the corresponding elementary symmetric polynomial is σ 1 σ 3 \sigma_1\sigma_3 σ1σ3, Subtracting the
f 1 = f − σ 1 σ 3 = − ( α 1 α 2 α 3 α 4 + ⋯   ) , f_1=f-\sigma_1\sigma_3=-(\alpha_1\alpha_2\alpha_3\alpha_4+\cdots), f1=fσ1σ3=(α1α2α3α4+),
f 1 f_1 f1 The first item is α 1 α 2 α 3 α 4 \alpha_1\alpha_2\alpha_3\alpha_4 α1α2α3α4, Corresponding 4 Tuples ( 1 , 1 , 1 , 1 ) (1,1,1,1) (1,1,1,1), namely σ 4 \sigma_4 σ4, So we get
f = σ 1 σ 3 + w σ 4 , f=\sigma_1\sigma_3+w\sigma_4, f=σ1σ3+wσ4,
Undetermined coefficient method , take α i = 1 \alpha_i=1 αi=1, obtain
12 = 16 + w , 12=16+w, 12=16+w,
therefore w = − 4 w=-4 w=4, therefore f = σ 1 σ 3 − 4 σ 4 = b d − 4 e f=\sigma_1\sigma_3-4\sigma_4=bd-4e f=σ1σ34σ4=bd4e, So we get the coefficient of the first-order term .

Sum up , We got
x 3 − c x 2 + ( b d − 4 e ) x − b 2 e + 4 c e − d 2 = 0. x^3-cx^2+(bd-4e)x-b^2e+4ce-d^2=0. x3cx2+(bd4e)xb2e+4ced2=0.

Main reference

  • Advanced algebra Peking University fourth edition ( Wang Yafang , Shishengming )
原网站

版权声明
本文为[zorchp]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202220540411207.html