当前位置:网站首页>Notes on algebra 10.1: understanding of symmetric polynomials and derivation of cubic resolvents
Notes on algebra 10.1: understanding of symmetric polynomials and derivation of cubic resolvents
2022-06-22 07:06:00 【zorchp】
Write it at the front
In the previous study, I naively thought that the solution of elementary symmetric polynomial representation by symmetric polynomial is to directly apply the formula , No deep understanding Fundamental theorem of symmetric polynomials The derivation process of .
The direct use doctrine can solve some problems , But there will still be some small problems that cannot be solved , Today, I picked up the advanced algebra textbook and read it again , Only then can we truly master the representation of elementary symmetric polynomials of symmetric polynomials , And the cubic resolvent used to calculate and deduce the quartic equation ( Previous blog Have adopted the CAS Calculation , Convenient but I don't know why , Anguish )
The teacher explained something in class , But some jumps , You still have to savor it carefully to realize the truth .
Symmetric polynomials
n n n Multivariate polynomial f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn), If for any i , j , ( 1 ≤ i < j ≤ n ) i,j,\ (1\le i<j\le n) i,j, (1≤i<j≤n), There are
f ( x 1 , ⋯ , x i , ⋯ , x j , ⋯ , x n ) = f ( x 1 , ⋯ , x j , ⋯ , x i , ⋯ , x n ) . f(x_1,\cdots,x_i,\cdots,x_j,\cdots,x_n)=f(x_1,\cdots,x_j,\cdots,x_i,\cdots,x_n). f(x1,⋯,xi,⋯,xj,⋯,xn)=f(x1,⋯,xj,⋯,xi,⋯,xn).
Then the polynomial is called a symmetric polynomial .
Fundamental theorem of symmetric polynomials
For any one n n n Symmetric polynomials of variables f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) There is one. n n n Multivariate polynomial φ ( y 1 , y 2 , ⋯ , y n ) \varphi(y_1,y_2,\cdots,y_n) φ(y1,y2,⋯,yn) bring
f ( x 1 , x 2 , ⋯ , x n ) = φ ( σ 1 , σ 2 , ⋯ , σ n ) . f(x_1,x_2,\cdots,x_n)=\varphi(\sigma_1,\sigma_2,\cdots,\sigma_n). f(x1,x2,⋯,xn)=φ(σ1,σ2,⋯,σn).
among σ i \sigma_i σi Is an elementary symmetric polynomial , As follows
{ σ 1 = x 1 + x 2 + ⋯ + x n , σ 2 = x 1 x 2 + x 1 x 3 + ⋯ + x n − 1 x n , ⋯ σ n = x 1 x 2 ⋯ x n . \begin{cases} \sigma_1=x_1+x_2+\cdots+x_n,\\ \sigma_2=x_1x_2+x_1x_3+\cdots+x_{n-1}x_n,\\ \cdots\\ \sigma_n=x_1x_2\cdots x_n. \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧σ1=x1+x2+⋯+xn,σ2=x1x2+x1x3+⋯+xn−1xn,⋯σn=x1x2⋯xn.
prove ( A method of expressing symmetric polynomials as polynomials of elementary symmetric polynomials )
set up f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn)( Arranged in dictionary order ) The first item is
a x 1 l 1 x 2 l 2 ⋯ x n l n , a ≠ 0. (1) ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n},\quad a\ne0.\tag{1} ax1l1x2l2⋯xnln,a=0.(1)
( 1 ) (1) (1) The formula is f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) First item of , There must be l i ≥ l 2 ≥ ⋯ ≥ l n ≥ 0 ) l_i\ge l_2\ge\cdots\ge l_n\ge0) li≥l2≥⋯≥ln≥0).
Otherwise , Equipped with l i < l i + 1 l_i<l_{i+1} li<li+1, from f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) Is a symmetric polynomial , therefore f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) It contains the following two items at the same time
a x 1 l 1 x 2 l 2 ⋯ x n l n , a x 1 l 1 ⋯ x i l i + 1 x i + 1 l i ⋯ x n l n , ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n},\quad ax_1^{l_1}\cdots x_i^{l_{i+1}}x_{i+1}^{l_i}\cdots x_n^{l_n}, ax1l1x2l2⋯xnln,ax1l1⋯xili+1xi+1li⋯xnln,
In dictionary order , The latter should precede the former , And the former is the first contradiction .
Make symmetric polynomials
φ 1 = a σ 1 l 1 − l 2 σ 2 l 2 − l 3 ⋯ σ n l n (2) \varphi_1=a\sigma_1^{l_1-l_2}\sigma_2^{l_2-l_3}\cdots \sigma_n^{l_n}\tag{2} φ1=aσ1l1−l2σ2l2−l3⋯σnln(2)
because σ 1 , σ 2 , ⋯ , σ n \sigma_1,\sigma_2,\cdots,\sigma_n σ1,σ2,⋯,σn The first items are x 1 , x 1 x 2 , ⋯ , x 1 x 2 ⋯ x n x_1,x_1x_2,\cdots,x_1x_2\cdots x_n x1,x1x2,⋯,x1x2⋯xn, So the right end of the above formula is just expanded to get
φ 1 = a x 1 l 1 x 2 l 2 ⋯ x n l n , \varphi_1=ax_1^{l_1}x_2^{l_2}\cdots x_n^{l_n}, φ1=ax1l1x2l2⋯xnln,
This also explains why Item by item .
therefore , φ 1 \varphi_1 φ1 And f f f Have the same first item , After subtracting the two, we can just get a symmetric polynomial of smaller degree , namely
f 1 ( x 1 , x 2 , ⋯ , x n ) = f − φ 1 f_1(x_1,x_2,\cdots,x_n)=f-\varphi_1 f1(x1,x2,⋯,xn)=f−φ1
Repeat this , A series of symmetric polynomials with decreasing degree can be obtained , namely
f , f 1 = f − φ 1 , f 2 = f 1 − φ 2 , ⋯ . (3) f,f_1=f-\varphi_1,f_2=f_1-\varphi_2,\cdots.\tag{3} f,f1=f−φ1,f2=f1−φ2,⋯.(3)
set up b x 1 p 1 x 2 p 2 ⋯ x n p n bx_1^{p_1}x_2^{p_2}\cdots x_n^{p_n} bx1p1x2p2⋯xnpn by ( 3 ) (3) (3) The first term of a symmetric polynomial in , ( 1 ) (1) (1) Before ( 3 ) (3) (3), It's about meeting
l 1 ≥ p 1 ≥ p 2 ≥ ⋯ ≥ p n ≥ 0 , l_1\ge p_1\ge p_2\ge\cdots\ge p_n\ge0, l1≥p1≥p2≥⋯≥pn≥0,
obviously , Suitable for the above conditions n n n Tuples ( p 1 , ⋯ , p n ) (p_1,\cdots,p_n) (p1,⋯,pn) There are only a limited number of , therefore ( 3 ) (3) (3) Only a finite number of symmetric polynomials are not zero , There is a positive integer h h h bring f h = 0 f_h=0 fh=0 establish , That means
f ( x 1 , x 2 , ⋯ , x n ) = φ 1 + φ 2 + ⋯ + φ h , f(x_1,x_2,\cdots,x_n)=\varphi_1+\varphi_2+\cdots+\varphi_h, f(x1,x2,⋯,xn)=φ1+φ2+⋯+φh,
namely f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) The sum of some monomials that can be expressed as elementary symmetric polynomials , That is, symmetric polynomials f ( x 1 , x 2 , ⋯ , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,⋯,xn) It can be expressed in the form of polynomials of elementary symmetric polynomials .
The uniqueness is easily proved .
Above, we introduced the theorem of calculating the representation of symmetric polynomials , Here is a specific application .
- It is difficult to remember the cubic resolvent of quartic equation directly , The derivation method is given here .
Calculate the cubic resolvent of the quartic equation
x 4 + b x 3 + c x 2 + d x + e = 0 , x^4+bx^3+cx^2+dx+e=0, x4+bx3+cx2+dx+e=0,
Cubic resolvent :
x 3 − c x 2 + ( b d − 4 e ) x − b 2 e + 4 c e − d 2 = 0. x^3-cx^2+(bd-4e)x-b^2e+4ce-d^2=0. x3−cx2+(bd−4e)x−b2e+4ce−d2=0.
g ( x ) = ( x − β 1 ) ( x − β 2 ) ( x − β 3 ) = x 3 − ∑ i β i x 2 + ∑ i ≠ j β i β j x − ∏ i β i , g(x)=(x-\beta_1)(x-\beta_2)(x-\beta_3)=x^3-\sum_{i}\beta_ix^2+\sum_{i\ne j}\beta_i\beta_jx-\prod_i\beta_i, g(x)=(x−β1)(x−β2)(x−β3)=x3−i∑βix2+i=j∑βiβjx−i∏βi,
Just calculate the above
− ∑ i β i , ∑ i ≠ j β i β j , − ∏ i β i , -\sum_{i}\beta_i,\ \sum_{i\ne j}\beta_i\beta_j, -\prod_i\beta_i, −i∑βi, i=j∑βiβj,−i∏βi,
Here we will focus on The most difficult item to calculate , That is to say ∏ β i = β 1 β 2 β 3 \prod\beta_i=\beta_1\beta_2\beta_3 ∏βi=β1β2β3, It can be expressed as
f ( α 1 , α 2 , α 3 , α 4 ) = ( α 1 α 2 + α 3 α 4 ) ( α 1 α 3 + α 2 α 4 ) ( α 1 α 4 + α 2 α 3 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=(\alpha_1\alpha_2+\alpha_3\alpha_4)(\alpha_1\alpha_3+\alpha_2\alpha_4)(\alpha_1\alpha_4+\alpha_2\alpha_3) f(α1,α2,α3,α4)=(α1α2+α3α4)(α1α3+α2α4)(α1α4+α2α3)
obviously , The quaternion polynomial above f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4) Is a symmetric polynomial , Next, consider how to use the polynomial form of elementary symmetric polynomials to express f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4). among , Elementary symmetric polynomials are expressed as follows ( By the way, the relationship between the root and the coefficient )
{ σ 1 = − b = ∑ i α i σ 2 = c = ∑ i ≠ j α i α j σ 3 = − d = ∑ i ≠ j , j ≠ k , k ≠ i α i α j α k σ 4 = e = ∏ i α i \begin{cases} \sigma_1=-b=\sum\limits_i\alpha_i\\ \sigma_2=c=\sum\limits_{i\ne j}\alpha_i\alpha_j\\ \sigma_3=-d=\sum\limits_{i\ne j,j\ne k,k\ne i}\alpha_i\alpha_j\alpha_k\\ \sigma_4=e=\prod\limits_i\alpha_i \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧σ1=−b=i∑αiσ2=c=i=j∑αiαjσ3=−d=i=j,j=k,k=i∑αiαjαkσ4=e=i∏αi
First of all, we need to find f ( α 1 , α 2 , α 3 , α 4 ) f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) f(α1,α2,α3,α4) First item of , It is not difficult to find that the first item is α 1 3 α 2 α 3 α 4 \alpha_1^3\alpha_2\alpha_3\alpha_4 α13α2α3α4, The corresponding quadruple is ( 3 , 1 , 1 , 1 ) (3,1,1,1) (3,1,1,1), So the first term of the corresponding elementary symmetric polynomial is σ 1 2 σ 4 \sigma_1^2\sigma_4 σ12σ4, In this case, you need to subtract the original polynomial from the first term , as follows
f 1 = f ( α 1 , α 2 , α 3 , α 4 ) − σ 1 2 σ 4 = − 2 ( α 1 2 α 2 2 α 3 α 4 + ⋯ ) + ⋯ \begin{aligned} f_1=f(\alpha_1,\alpha_2,\alpha_3,\alpha_4)-\sigma_1^2\sigma_4 &=-2(\alpha_1^2\alpha_2^2\alpha_3\alpha_4+\cdots)+\cdots \end{aligned} f1=f(α1,α2,α3,α4)−σ12σ4=−2(α12α22α3α4+⋯)+⋯
Now the new polynomial f 1 f_1 f1 The first item of becomes α 1 2 α 2 2 α 3 α 4 \alpha_1^2\alpha_2^2\alpha_3\alpha_4 α12α22α3α4, The corresponding quadruple is ( 2 , 2 , 1 , 1 ) (2,2,1,1) (2,2,1,1), Then the corresponding first item becomes σ 2 σ 4 \sigma_2\sigma_4 σ2σ4, Another step of subtraction :
f 2 = f 1 − σ 2 σ 4 = α 1 2 α 2 2 α 3 2 + ⋯ f_2 = f_1-\sigma_2\sigma_4=\alpha_1^2\alpha_2^2\alpha_3^2+\cdots f2=f1−σ2σ4=α12α22α32+⋯
f 2 f_2 f2 The corresponding quadruple is ( 2 , 2 , 2 , 0 ) (2,2,2,0) (2,2,2,0), So the first item here corresponds to σ 3 2 \sigma_3^2 σ32, So we can start using the undetermined coefficient method ∏ β i = β 1 β 2 β 3 \prod\beta_i=\beta_1\beta_2\beta_3 ∏βi=β1β2β3 了 .
∏ β i = β 1 β 2 β 3 = σ 1 2 σ 4 + u σ 3 2 + v σ 2 σ 4 , \prod\beta_i=\beta_1\beta_2\beta_3=\sigma_1^2\sigma_4+u\sigma_3^2+v\sigma_2\sigma_4, ∏βi=β1β2β3=σ12σ4+uσ32+vσ2σ4,
take α 1 = α 2 = α 3 = 1 , α 4 = 0 \alpha_1=\alpha_2=\alpha_3=1, \alpha_4=0 α1=α2=α3=1,α4=0, obtain
u = 1 , u=1, u=1,
take α i = 1 \alpha_i=1 αi=1, obtain
6 v = − 24 * v = − 4 , 6v=-24\Longrightarrow v=-4, 6v=−24*v=−4,
So we got
∏ β i = β 1 β 2 β 3 = σ 1 2 σ 4 + σ 3 2 − 4 σ 2 σ 4 , \prod\beta_i=\beta_1\beta_2\beta_3=\sigma_1^2\sigma_4+\sigma_3^2-4\sigma_2\sigma_4, ∏βi=β1β2β3=σ12σ4+σ32−4σ2σ4,
Then, the relationship between the root and the coefficient is used for correspondence , You can get
∏ β i = β 1 β 2 β 3 = b 2 e + d 2 − 4 c e . \prod\beta_i=\beta_1\beta_2\beta_3=b^2e+d^2-4ce. ∏βi=β1β2β3=b2e+d2−4ce.
When this is done , The remaining two coefficients can be calculated directly , The previous article mentioned . Here is a brief introduction .
Coefficient of the square term , β i \beta_i βi Just add it up
− ∑ i β i = − ∑ i ≠ j α i α j = − c , -\sum_{i}\beta_i=-\sum\limits_{i\ne j}\alpha_i\alpha_j=-c, −i∑βi=−i=j∑αiαj=−c,
For the coefficient of the first-order term , The basic theorem of symmetric polynomials can also be used , as follows
set up
f ( β 1 , β 2 , β 3 ) = ∑ i ≠ j β i β j = β 1 β 2 + β 1 β 3 + β 2 β 3 , f(\beta_1,\beta_2,\beta_3)=\sum_{i\ne j}\beta_i\beta_j=\beta_1\beta_2+\beta_1\beta_3+\beta_2\beta_3, f(β1,β2,β3)=i=j∑βiβj=β1β2+β1β3+β2β3,
The first item is α 1 2 α 2 α 3 \alpha_1^2\alpha_2\alpha_3 α12α2α3, namely ( 2 , 1 , 1 , 0 ) (2,1,1,0) (2,1,1,0), The first term of the corresponding elementary symmetric polynomial is σ 1 σ 3 \sigma_1\sigma_3 σ1σ3, Subtracting the
f 1 = f − σ 1 σ 3 = − ( α 1 α 2 α 3 α 4 + ⋯ ) , f_1=f-\sigma_1\sigma_3=-(\alpha_1\alpha_2\alpha_3\alpha_4+\cdots), f1=f−σ1σ3=−(α1α2α3α4+⋯),
f 1 f_1 f1 The first item is α 1 α 2 α 3 α 4 \alpha_1\alpha_2\alpha_3\alpha_4 α1α2α3α4, Corresponding 4 Tuples ( 1 , 1 , 1 , 1 ) (1,1,1,1) (1,1,1,1), namely σ 4 \sigma_4 σ4, So we get
f = σ 1 σ 3 + w σ 4 , f=\sigma_1\sigma_3+w\sigma_4, f=σ1σ3+wσ4,
Undetermined coefficient method , take α i = 1 \alpha_i=1 αi=1, obtain
12 = 16 + w , 12=16+w, 12=16+w,
therefore w = − 4 w=-4 w=−4, therefore f = σ 1 σ 3 − 4 σ 4 = b d − 4 e f=\sigma_1\sigma_3-4\sigma_4=bd-4e f=σ1σ3−4σ4=bd−4e, So we get the coefficient of the first-order term .
Sum up , We got
x 3 − c x 2 + ( b d − 4 e ) x − b 2 e + 4 c e − d 2 = 0. x^3-cx^2+(bd-4e)x-b^2e+4ce-d^2=0. x3−cx2+(bd−4e)x−b2e+4ce−d2=0.
Main reference
- Advanced algebra Peking University fourth edition ( Wang Yafang , Shishengming )
边栏推荐
- [Gan] Introduction to Gan basics and dcgan
- Anaconda introduction, installation and use nanny level tutorial
- June 21, 2022: golang multiple choice question, what does the following golang code output? A:3; B:4; C:100; D: Compilation failed. package main import ( “fmt“ ) func
- Résumé semestriel du programmeur de 33 ans
- Great progress in code
- 【GCN-RS】UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation (CIKM‘21)
- 【GAN】《ENERGY-BASED GENERATIVE ADVERSARIAL NETWORKS》 ICLR‘17
- Event preview edgex developer summit @ Nanjing station is coming!
- 汇编学习《汇编语言(第三版)》王爽著第四章学习
- Introduction to 51 Single Chip Microcomputer -- timer and external interrupt
猜你喜欢

【GAN】SAGAN ICML‘19

golang调用sdl2,播放pcm音频,报错signal arrived during external code execution。

How can we effectively alleviate anxiety? See what ape tutor says

Yolov1 (prediction process)

Introduction to 51 Single Chip Microcomputer -- digital tube

matlab 实现中值滤波

汇编学习《汇编语言(第三版)》王爽著第四章学习

如何才能有效缓解焦虑?看看猿辅导怎么说

Assembly learning Chapter 4 of assembly language (Third Edition) written by Wang Shuang

Self attention (notes, for personal use)
随机推荐
JDBC查询结果集,结果集转化成表
Self supervised learning for general out of distribution detection AAAI '20
Leetcode--- search insertion location
Cesium loading 3D tiles model
Golang calls sdl2, plays PCM audio, and reports an error signal arrived during external code execution.
Reprint the Alibaba open source project egg JS technical documents cause "copyright disputes". How to use the loose MIT license?
PDF转图片实现方式
Error when connecting MySQL with dbeaver for the first time
Event preview edgex developer summit @ Nanjing station is coming!
【GCN-RS】UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation (CIKM‘21)
An image is worth 16x16 words: translators for image recognition at scale
33歲程序員的年中總結
Generate string mode
2022-06-21:golang选择题,以下golang代码输出什么?A:3;B:4;C:100;D:编译失败。 package main import ( “fmt“ ) func
June training (day 22) - orderly gathering
JS中如何阻止事件的传播
Difference between grail layout and twin wing layout
Introduction to 51 single chip microcomputer - matrix key
leetcode:面试题 08.12. 八皇后【dfs + backtrack】
Mid year summary of 33 year old programmer